Spaces:
Runtime error
Runtime error
PFEemp2024
commited on
Commit
•
b16fdae
1
Parent(s):
18b7cae
adding the main file for the correction process
Browse files- main_correction.py +89 -0
main_correction.py
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import textattack
|
2 |
+
import transformers
|
3 |
+
from FlowCorrector import Flow_Corrector
|
4 |
+
import torch
|
5 |
+
import torch.nn.functional as F
|
6 |
+
|
7 |
+
def count_matching_classes(original, corrected):
|
8 |
+
if len(original) != len(corrected):
|
9 |
+
raise ValueError("Arrays must have the same length")
|
10 |
+
|
11 |
+
matching_count = 0
|
12 |
+
|
13 |
+
for i in range(len(corrected)):
|
14 |
+
if original[i] == corrected[i]:
|
15 |
+
matching_count += 1
|
16 |
+
|
17 |
+
return matching_count
|
18 |
+
|
19 |
+
if __name__ == "main" :
|
20 |
+
|
21 |
+
# Load model, tokenizer, and model_wrapper
|
22 |
+
model = transformers.AutoModelForSequenceClassification.from_pretrained(
|
23 |
+
"textattack/bert-base-uncased-ag-news"
|
24 |
+
)
|
25 |
+
tokenizer = transformers.AutoTokenizer.from_pretrained(
|
26 |
+
"textattack/bert-base-uncased-ag-news"
|
27 |
+
)
|
28 |
+
model_wrapper = textattack.models.wrappers.HuggingFaceModelWrapper(model, tokenizer)
|
29 |
+
|
30 |
+
# Construct our four components for `Attack`
|
31 |
+
from textattack.constraints.pre_transformation import (
|
32 |
+
RepeatModification,
|
33 |
+
StopwordModification,
|
34 |
+
)
|
35 |
+
from textattack.constraints.semantics import WordEmbeddingDistance
|
36 |
+
from textattack.transformations import WordSwapEmbedding
|
37 |
+
from textattack.search_methods import GreedyWordSwapWIR
|
38 |
+
|
39 |
+
goal_function = textattack.goal_functions.UntargetedClassification(model_wrapper)
|
40 |
+
constraints = [
|
41 |
+
RepeatModification(),
|
42 |
+
StopwordModification(),
|
43 |
+
WordEmbeddingDistance(min_cos_sim=0.9),
|
44 |
+
]
|
45 |
+
transformation = WordSwapEmbedding(max_candidates=50)
|
46 |
+
search_method = GreedyWordSwapWIR(wir_method="weighted-saliency")
|
47 |
+
|
48 |
+
# Construct the actual attack
|
49 |
+
attack = textattack.Attack(goal_function, constraints, transformation, search_method)
|
50 |
+
attack.cuda_()
|
51 |
+
|
52 |
+
# intialisation de coreecteur
|
53 |
+
corrector = Flow_Corrector(
|
54 |
+
attack,
|
55 |
+
word_rank_file="en_full_ranked.json",
|
56 |
+
word_freq_file="en_full_freq.json",
|
57 |
+
)
|
58 |
+
|
59 |
+
# All these texts are adverserial ones
|
60 |
+
|
61 |
+
with open('perturbed_texts_ag_news.txt', 'r') as f:
|
62 |
+
detected_texts = [line.strip() for line in f]
|
63 |
+
|
64 |
+
|
65 |
+
#These are orginal texts in same order of adverserial ones
|
66 |
+
|
67 |
+
with open("original_texts_ag_news.txt", "r") as f:
|
68 |
+
original_texts = [line.strip() for line in f]
|
69 |
+
|
70 |
+
victim_model = attack.goal_function.model
|
71 |
+
|
72 |
+
# getting original labels for benchmarking later
|
73 |
+
original_classes = [
|
74 |
+
torch.argmax(F.softmax(victim_model(original_text), dim=1)).item()
|
75 |
+
for original_text in original_texts
|
76 |
+
]
|
77 |
+
|
78 |
+
""" 0 :World
|
79 |
+
1 : Sports
|
80 |
+
2 : Business
|
81 |
+
3 : Sci/Tech"""
|
82 |
+
|
83 |
+
corrected_classes = corrector.correct(original_texts)
|
84 |
+
print(f"match {count_matching_classes()}")
|
85 |
+
|
86 |
+
|
87 |
+
|
88 |
+
|
89 |
+
|