Spaces:
Runtime error
Runtime error
""" | |
Particle Swarm Optimization | |
==================================== | |
Reimplementation of search method from Word-level Textual Adversarial | |
Attacking as Combinatorial Optimization by Zang et. | |
al | |
`<https://www.aclweb.org/anthology/2020.acl-main.540.pdf>`_ | |
`<https://github.com/thunlp/SememePSO-Attack>`_ | |
""" | |
import copy | |
import numpy as np | |
from textattack.goal_function_results import GoalFunctionResultStatus | |
from textattack.search_methods import PopulationBasedSearch, PopulationMember | |
from textattack.shared import utils | |
from textattack.shared.validators import transformation_consists_of_word_swaps | |
class ParticleSwarmOptimization(PopulationBasedSearch): | |
"""Attacks a model with word substiutitions using a Particle Swarm | |
Optimization (PSO) algorithm. Some key hyper-parameters are setup according | |
to the original paper: | |
"We adjust PSO on the validation set of SST and set ω_1 as 0.8 and ω_2 as 0.2. | |
We set the max velocity of the particles V_{max} to 3, which means the changing | |
probability of the particles ranges from 0.047 (sigmoid(-3)) to 0.953 (sigmoid(3))." | |
Args: | |
pop_size (:obj:`int`, optional): The population size. Defaults to 60. | |
max_iters (:obj:`int`, optional): The maximum number of iterations to use. Defaults to 20. | |
post_turn_check (:obj:`bool`, optional): If `True`, check if new position reached by moving passes the constraints. Defaults to `True` | |
max_turn_retries (:obj:`bool`, optional): Maximum number of movement retries if new position after turning fails to pass the constraints. | |
Applied only when `post_movement_check` is set to `True`. | |
Setting it to 0 means we immediately take the old position as the new position upon failure. | |
""" | |
def __init__( | |
self, pop_size=60, max_iters=20, post_turn_check=True, max_turn_retries=20 | |
): | |
self.max_iters = max_iters | |
self.pop_size = pop_size | |
self.post_turn_check = post_turn_check | |
self.max_turn_retries = 20 | |
self._search_over = False | |
self.omega_1 = 0.8 | |
self.omega_2 = 0.2 | |
self.c1_origin = 0.8 | |
self.c2_origin = 0.2 | |
self.v_max = 3.0 | |
def _perturb(self, pop_member, original_result): | |
"""Perturb `pop_member` in-place. | |
Replaces a word at a random in `pop_member` with replacement word that maximizes increase in score. | |
Args: | |
pop_member (PopulationMember): The population member being perturbed. | |
original_result (GoalFunctionResult): Result of original sample being attacked | |
Returns: | |
`True` if perturbation occured. `False` if not. | |
""" | |
# TODO: Below is very slow and is the main cause behind memory build up + slowness | |
best_neighbors, prob_list = self._get_best_neighbors( | |
pop_member.result, original_result | |
) | |
random_result = np.random.choice(best_neighbors, 1, p=prob_list)[0] | |
if random_result == pop_member.result: | |
return False | |
else: | |
pop_member.attacked_text = random_result.attacked_text | |
pop_member.result = random_result | |
return True | |
def _equal(self, a, b): | |
return -self.v_max if a == b else self.v_max | |
def _turn(self, source_text, target_text, prob, original_text): | |
""" | |
Based on given probabilities, "move" to `target_text` from `source_text` | |
Args: | |
source_text (PopulationMember): Text we start from. | |
target_text (PopulationMember): Text we want to move to. | |
prob (np.array[float]): Turn probability for each word. | |
original_text (AttackedText): Original text for constraint check if `self.post_turn_check=True`. | |
Returns: | |
New `Position` that we moved to (or if we fail to move, same as `source_text`) | |
""" | |
assert len(source_text.words) == len( | |
target_text.words | |
), "Word length mismatch for turn operation." | |
assert len(source_text.words) == len( | |
prob | |
), "Length mismatch for words and probability list." | |
len_x = len(source_text.words) | |
num_tries = 0 | |
passed_constraints = False | |
while num_tries < self.max_turn_retries + 1: | |
indices_to_replace = [] | |
words_to_replace = [] | |
for i in range(len_x): | |
if np.random.uniform() < prob[i]: | |
indices_to_replace.append(i) | |
words_to_replace.append(target_text.words[i]) | |
new_text = source_text.attacked_text.replace_words_at_indices( | |
indices_to_replace, words_to_replace | |
) | |
indices_to_replace = set(indices_to_replace) | |
new_text.attack_attrs["modified_indices"] = ( | |
source_text.attacked_text.attack_attrs["modified_indices"] | |
- indices_to_replace | |
) | ( | |
target_text.attacked_text.attack_attrs["modified_indices"] | |
& indices_to_replace | |
) | |
if "last_transformation" in source_text.attacked_text.attack_attrs: | |
new_text.attack_attrs[ | |
"last_transformation" | |
] = source_text.attacked_text.attack_attrs["last_transformation"] | |
if not self.post_turn_check or (new_text.words == source_text.words): | |
break | |
if "last_transformation" in new_text.attack_attrs: | |
passed_constraints = self._check_constraints( | |
new_text, source_text.attacked_text, original_text=original_text | |
) | |
else: | |
passed_constraints = True | |
if passed_constraints: | |
break | |
num_tries += 1 | |
if self.post_turn_check and not passed_constraints: | |
# If we cannot find a turn that passes the constraints, we do not move. | |
return source_text | |
else: | |
return PopulationMember(new_text) | |
def _get_best_neighbors(self, current_result, original_result): | |
"""For given current text, find its neighboring texts that yields | |
maximum improvement (in goal function score) for each word. | |
Args: | |
current_result (GoalFunctionResult): `GoalFunctionResult` of current text | |
original_result (GoalFunctionResult): `GoalFunctionResult` of original text. | |
Returns: | |
best_neighbors (list[GoalFunctionResult]): Best neighboring text for each word | |
prob_list (list[float]): discrete probablity distribution for sampling a neighbor from `best_neighbors` | |
""" | |
current_text = current_result.attacked_text | |
neighbors_list = [[] for _ in range(len(current_text.words))] | |
transformed_texts = self.get_transformations( | |
current_text, original_text=original_result.attacked_text | |
) | |
for transformed_text in transformed_texts: | |
diff_idx = next( | |
iter(transformed_text.attack_attrs["newly_modified_indices"]) | |
) | |
neighbors_list[diff_idx].append(transformed_text) | |
best_neighbors = [] | |
score_list = [] | |
for i in range(len(neighbors_list)): | |
if not neighbors_list[i]: | |
best_neighbors.append(current_result) | |
score_list.append(0) | |
continue | |
neighbor_results, self._search_over = self.get_goal_results( | |
neighbors_list[i] | |
) | |
if not len(neighbor_results): | |
best_neighbors.append(current_result) | |
score_list.append(0) | |
else: | |
neighbor_scores = np.array([r.score for r in neighbor_results]) | |
score_diff = neighbor_scores - current_result.score | |
best_idx = np.argmax(neighbor_scores) | |
best_neighbors.append(neighbor_results[best_idx]) | |
score_list.append(score_diff[best_idx]) | |
prob_list = normalize(score_list) | |
return best_neighbors, prob_list | |
def _initialize_population(self, initial_result, pop_size): | |
""" | |
Initialize a population of size `pop_size` with `initial_result` | |
Args: | |
initial_result (GoalFunctionResult): Original text | |
pop_size (int): size of population | |
Returns: | |
population as `list[PopulationMember]` | |
""" | |
best_neighbors, prob_list = self._get_best_neighbors( | |
initial_result, initial_result | |
) | |
population = [] | |
for _ in range(pop_size): | |
# Mutation step | |
random_result = np.random.choice(best_neighbors, 1, p=prob_list)[0] | |
population.append( | |
PopulationMember(random_result.attacked_text, random_result) | |
) | |
return population | |
def perform_search(self, initial_result): | |
self._search_over = False | |
population = self._initialize_population(initial_result, self.pop_size) | |
# Initialize up velocities of each word for each population | |
v_init = np.random.uniform(-self.v_max, self.v_max, self.pop_size) | |
velocities = np.array( | |
[ | |
[v_init[t] for _ in range(initial_result.attacked_text.num_words)] | |
for t in range(self.pop_size) | |
] | |
) | |
global_elite = max(population, key=lambda x: x.score) | |
if ( | |
self._search_over | |
or global_elite.result.goal_status == GoalFunctionResultStatus.SUCCEEDED | |
): | |
return global_elite.result | |
local_elites = copy.copy(population) | |
# start iterations | |
for i in range(self.max_iters): | |
omega = (self.omega_1 - self.omega_2) * ( | |
self.max_iters - i | |
) / self.max_iters + self.omega_2 | |
C1 = self.c1_origin - i / self.max_iters * (self.c1_origin - self.c2_origin) | |
C2 = self.c2_origin + i / self.max_iters * (self.c1_origin - self.c2_origin) | |
P1 = C1 | |
P2 = C2 | |
for k in range(len(population)): | |
# calculate the probability of turning each word | |
pop_mem_words = population[k].words | |
local_elite_words = local_elites[k].words | |
assert len(pop_mem_words) == len( | |
local_elite_words | |
), "PSO word length mismatch!" | |
for d in range(len(pop_mem_words)): | |
velocities[k][d] = omega * velocities[k][d] + (1 - omega) * ( | |
self._equal(pop_mem_words[d], local_elite_words[d]) | |
+ self._equal(pop_mem_words[d], global_elite.words[d]) | |
) | |
turn_prob = utils.sigmoid(velocities[k]) | |
if np.random.uniform() < P1: | |
# Move towards local elite | |
population[k] = self._turn( | |
local_elites[k], | |
population[k], | |
turn_prob, | |
initial_result.attacked_text, | |
) | |
if np.random.uniform() < P2: | |
# Move towards global elite | |
population[k] = self._turn( | |
global_elite, | |
population[k], | |
turn_prob, | |
initial_result.attacked_text, | |
) | |
# Check if there is any successful attack in the current population | |
pop_results, self._search_over = self.get_goal_results( | |
[p.attacked_text for p in population] | |
) | |
if self._search_over: | |
# if `get_goal_results` gets cut short by query budget, resize population | |
population = population[: len(pop_results)] | |
for k in range(len(pop_results)): | |
population[k].result = pop_results[k] | |
top_member = max(population, key=lambda x: x.score) | |
if ( | |
self._search_over | |
or top_member.result.goal_status == GoalFunctionResultStatus.SUCCEEDED | |
): | |
return top_member.result | |
# Mutation based on the current change rate | |
for k in range(len(population)): | |
change_ratio = initial_result.attacked_text.words_diff_ratio( | |
population[k].attacked_text | |
) | |
# Referred from the original source code | |
p_change = 1 - 2 * change_ratio | |
if np.random.uniform() < p_change: | |
self._perturb(population[k], initial_result) | |
if self._search_over: | |
break | |
# Check if there is any successful attack in the current population | |
top_member = max(population, key=lambda x: x.score) | |
if ( | |
self._search_over | |
or top_member.result.goal_status == GoalFunctionResultStatus.SUCCEEDED | |
): | |
return top_member.result | |
# Update the elite if the score is increased | |
for k in range(len(population)): | |
if population[k].score > local_elites[k].score: | |
local_elites[k] = copy.copy(population[k]) | |
if top_member.score > global_elite.score: | |
global_elite = copy.copy(top_member) | |
return global_elite.result | |
def check_transformation_compatibility(self, transformation): | |
"""The genetic algorithm is specifically designed for word | |
substitutions.""" | |
return transformation_consists_of_word_swaps(transformation) | |
def is_black_box(self): | |
return True | |
def extra_repr_keys(self): | |
return ["pop_size", "max_iters", "post_turn_check", "max_turn_retries"] | |
def normalize(n): | |
n = np.array(n) | |
n[n < 0] = 0 | |
s = np.sum(n) | |
if s == 0: | |
return np.ones(len(n)) / len(n) | |
else: | |
return n / s | |