DCWIR-Demo / textattack /commands /eval_model_command.py
PFEemp2024's picture
add necessary file
63775f2
"""
EvalModelCommand class
==============================
"""
from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser
from dataclasses import dataclass
import scipy
import torch
import textattack
from textattack import DatasetArgs, ModelArgs
from textattack.commands import TextAttackCommand
from textattack.model_args import HUGGINGFACE_MODELS, TEXTATTACK_MODELS
logger = textattack.shared.utils.logger
def _cb(s):
return textattack.shared.utils.color_text(str(s), color="blue", method="ansi")
@dataclass
class ModelEvalArgs(ModelArgs, DatasetArgs):
random_seed: int = 765
batch_size: int = 32
num_examples: int = 5
num_examples_offset: int = 0
class EvalModelCommand(TextAttackCommand):
"""The TextAttack model benchmarking module:
A command line parser to evaluatate a model from user
specifications.
"""
def get_preds(self, model, inputs):
with torch.no_grad():
preds = textattack.shared.utils.batch_model_predict(model, inputs)
return preds
def test_model_on_dataset(self, args):
model = ModelArgs._create_model_from_args(args)
dataset = DatasetArgs._create_dataset_from_args(args)
if args.num_examples == -1:
args.num_examples = len(dataset)
preds = []
ground_truth_outputs = []
i = 0
while i < min(args.num_examples, len(dataset)):
dataset_batch = dataset[i : min(args.num_examples, i + args.batch_size)]
batch_inputs = []
for text_input, ground_truth_output in dataset_batch:
attacked_text = textattack.shared.AttackedText(text_input)
batch_inputs.append(attacked_text.tokenizer_input)
ground_truth_outputs.append(ground_truth_output)
batch_preds = model(batch_inputs)
if not isinstance(batch_preds, torch.Tensor):
batch_preds = torch.Tensor(batch_preds)
preds.extend(batch_preds)
i += args.batch_size
preds = torch.stack(preds).squeeze().cpu()
ground_truth_outputs = torch.tensor(ground_truth_outputs).cpu()
logger.info(f"Got {len(preds)} predictions.")
if preds.ndim == 1:
# if preds is just a list of numbers, assume regression for now
# TODO integrate with `textattack.metrics` package
pearson_correlation, _ = scipy.stats.pearsonr(ground_truth_outputs, preds)
spearman_correlation, _ = scipy.stats.spearmanr(ground_truth_outputs, preds)
logger.info(f"Pearson correlation = {_cb(pearson_correlation)}")
logger.info(f"Spearman correlation = {_cb(spearman_correlation)}")
else:
guess_labels = preds.argmax(dim=1)
successes = (guess_labels == ground_truth_outputs).sum().item()
perc_accuracy = successes / len(preds) * 100.0
perc_accuracy = "{:.2f}%".format(perc_accuracy)
logger.info(f"Correct {successes}/{len(preds)} ({_cb(perc_accuracy)})")
def run(self, args):
args = ModelEvalArgs(**vars(args))
textattack.shared.utils.set_seed(args.random_seed)
# Default to 'all' if no model chosen.
if not (args.model or args.model_from_huggingface or args.model_from_file):
for model_name in list(HUGGINGFACE_MODELS.keys()) + list(
TEXTATTACK_MODELS.keys()
):
args.model = model_name
self.test_model_on_dataset(args)
logger.info("-" * 50)
else:
self.test_model_on_dataset(args)
@staticmethod
def register_subcommand(main_parser: ArgumentParser):
parser = main_parser.add_parser(
"eval",
help="evaluate a model with TextAttack",
formatter_class=ArgumentDefaultsHelpFormatter,
)
parser = ModelArgs._add_parser_args(parser)
parser = DatasetArgs._add_parser_args(parser)
parser.add_argument("--random-seed", default=765, type=int)
parser.add_argument(
"--batch-size",
type=int,
default=32,
help="The batch size for evaluating the model.",
)
parser.add_argument(
"--num-examples",
"-n",
type=int,
required=False,
default=5,
help="The number of examples to process, -1 for entire dataset",
)
parser.add_argument(
"--num-examples-offset",
"-o",
type=int,
required=False,
default=0,
help="The offset to start at in the dataset.",
)
parser.set_defaults(func=EvalModelCommand())