Oysiyl's picture
Create app.py
ec3b67b verified
raw
history blame
1.12 kB
import gradio as gr
from transformers import pipeline
import numpy as np
import librosa
from punctuators.models import PunctCapSegModelONNX
transcriber = pipeline("automatic-speech-recognition", model="Oysiyl/w2v-bert-2.0-dutch-colab-CV16.0")
punct_cap_model = PunctCapSegModelONNX.from_pretrained("1-800-BAD-CODE/xlm-roberta_punctuation_fullstop_truecase")
def transcribe(audio):
sr, y = audio
y = y.astype(np.float32)
y /= np.max(np.abs(y))
if sr != 16000:
y = librosa.resample(y, orig_sr=sr, target_sr=16000)
transcribed_text = transcriber({"sampling_rate": 16000, "raw": y})["text"]
punct_cap_text = punct_cap_model.infer(texts=[transcribed_text], apply_sbd=True)[0][0]
return punct_cap_text
demo = gr.Interface(
transcribe,
gr.Audio(sources=["upload", "microphone"]),
outputs="text",
title="Automatic Speech Recognition for Dutch language demo",
description="Click on the example below, upload audio from file or say something in microphone!",
examples=[["examples/example1.wav"], ["examples/example2.wav"]],
cache_examples=True
)
demo.launch()