File size: 4,944 Bytes
7862b34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d14a1f
7862b34
 
 
 
 
 
 
3d14a1f
7862b34
 
 
 
 
 
 
 
 
 
 
3d14a1f
7862b34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d14a1f
7862b34
 
 
 
3d14a1f
7862b34
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import streamlit as st
import pandas as pd
import torch
import numpy as np
from transformers import AutoTokenizer, AutoModel
import faiss
from streamlit.errors import StreamlitAPIException
import urllib.parse

import os
os.environ['KMP_DUPLICATE_LIB_OK'] = 'TRUE'

# Load model and tokenizer
model_name = "sentence-transformers/msmarco-distilbert-base-v3"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModel.from_pretrained(model_name)

# Load data
books = pd.read_csv('data_final_version.csv')

MAX_LEN = 300

def embed_bert_cls(text, model=model, tokenizer=tokenizer):
    t = tokenizer(text,
                  padding=True,
                  truncation=True,
                  return_tensors='pt',
                  max_length=MAX_LEN)
    with torch.no_grad():
        model_output = model(**{k: v.to(model.device) for k, v in t.items()})
    embeddings = model_output.last_hidden_state[:, 0, :]
    embeddings = torch.nn.functional.normalize(embeddings)
    return embeddings[0].cpu().squeeze()

# Load embeddings
embeddings = np.loadtxt('embeddings.txt')
embeddings_tensor = [torch.tensor(embedding) for embedding in embeddings]

# Create Faiss index
embeddings_matrix = np.stack(embeddings)
index = faiss.IndexFlatIP(embeddings_matrix.shape[1])
index.add(embeddings_matrix)

# CSS стили для заднего фона
background_image = """
    <style>
    .stApp {
        background-image: url("https://img.freepik.com/premium-photo/blur-image-book_9563-1100.jpg");
        background-size: cover;
        background-position: center;
        background-repeat: no-repeat;
    }
    </style>
"""

# Вставляем CSS стили в приложение Streamlit
st.markdown(background_image, unsafe_allow_html=True)

# Вставляем CSS стили для окошка с прозрачным фоном и черным текстом
transparent_title = """
    <style>
    .transparent-title {
        background-color: rgba(255, 255, 255, 0.7);
        padding: 10px;
        border-radius: 5px;
        box-shadow: 0px 0px 10px rgba(0, 0, 0, 0.1);
        color: black;
    }
    </style>
"""

transparent_box = """
    <style>
    .transparent-box {
        background-color: rgba(255, 255, 255, 0.7);
        padding: 10px;
        border-radius: 5px;
        box-shadow: 0px 0px 10px rgba(0, 0, 0, 0.1);
        color: black;
    }
    </style>
"""

# Вставляем CSS стили в приложение Streamlit
st.markdown(transparent_title, unsafe_allow_html=True)
st.markdown(transparent_box, unsafe_allow_html=True)

# Streamlit interface
st.markdown('<h1 class="transparent-title">🎓📚Приложение для рекомендаций книг📚🎓</h1>', unsafe_allow_html=True)

# Далее ваш код Streamlit
text = st.text_input('Введите ваш запрос для поиска книг:')
num_results = st.number_input('Количество результатов:', min_value=1, max_value=20, value=3)
recommend_button = st.button('Получить рекомендации')

if text and recommend_button:  # Check if the user entered text and clicked the button

    # Embed the query and search for nearest vectors using Faiss
    query_embedding = embed_bert_cls(text)
    query_embedding = query_embedding.numpy().astype('float32')
    _, indices = index.search(np.expand_dims(query_embedding, axis=0), num_results)

    st.subheader('Рекомендации по вашему запросу:')
    for i in indices[0]:
        recommended_embedding = embeddings_tensor[i].numpy()  # Vector of the recommended book
        similarity = np.dot(query_embedding, recommended_embedding) / (np.linalg.norm(query_embedding) * np.linalg.norm(recommended_embedding))  # Cosine similarity
        similarity_percent = similarity * 100

        col1, col2 = st.columns([1, 3])
        with col1:
            image_url = books['image_url'][i]
            if pd.isna(image_url) or not image_url or image_url.strip() == '':
                st.write("Обложка не найдена")
            else:
                try:
                    st.image(image_url, use_column_width=True)
                except Exception as e:
                    st.write("Обложка не найдена")
                    st.write(e)

        with col2:
            # Выводим информацию о книге на прозрачном фоне с черным текстом
            st.markdown(f"""
                <div class="transparent-box">
                    <p><b>Название книги:</b> {books['title'][i]}</p>
                    <p><b>Автор:</b> {books['author'][i]}</p>
                    <p><b>Описание:</b> {books['annotation'][i]}</p>
                    <p><b>Оценка сходства:</b> {similarity_percent:.2f}%</p>
                </div>
            """, unsafe_allow_html=True)

        st.write("---")