import gradio as gr import os import numpy as np import torch from models.network_swinir import SwinIR device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print("device: %s" % device) default_models = { "sr": "weights/003_realSR_BSRGAN_DFO_s64w8_SwinIR-M_x4_GAN.pth", "denoise": "weights/005_colorDN_DFWB_s128w8_SwinIR-M_noise25.pth" } torch.backends.cudnn.enabled = True torch.backends.cudnn.benchmark = True denoise_model = SwinIR(upscale=1, in_chans=3, img_size=128, window_size=8, img_range=1., depths=[6, 6, 6, 6, 6, 6], embed_dim=180, num_heads=[6, 6, 6, 6, 6, 6], mlp_ratio=2, upsampler='', resi_connection='1conv').to(device) param_key_g = 'params' try: pretrained_model = torch.load(default_models["denoise"]) denoise_model.load_state_dict(pretrained_model[param_key_g] if param_key_g in pretrained_model.keys() else pretrained_model, strict=True) except: print("Loading model failed") denoise_model.eval() sr_model = SwinIR(upscale=4, in_chans=3, img_size=64, window_size=8, img_range=1., depths=[6, 6, 6, 6, 6, 6], embed_dim=180, num_heads=[6, 6, 6, 6, 6, 6], mlp_ratio=2, upsampler='nearest+conv', resi_connection='1conv').to(device) param_key_g = 'params_ema' try: pretrained_model = torch.load(default_models["sr"]) sr_model.load_state_dict(pretrained_model[param_key_g] if param_key_g in pretrained_model.keys() else pretrained_model, strict=True) except: print("Loading model failed") sr_model.eval() def sr(input_img): window_size = 8 # read image img_lq = input_img.astype(np.float32) / 255. img_lq = np.transpose(img_lq if img_lq.shape[2] == 1 else img_lq[:, :, [2, 1, 0]], (2, 0, 1)) # HCW-BGR to CHW-RGB img_lq = torch.from_numpy(img_lq).float().unsqueeze(0).to(device) # CHW-RGB to NCHW-RGB # inference with torch.no_grad(): # pad input image to be a multiple of window_size _, _, h_old, w_old = img_lq.size() h_pad = (h_old // window_size + 1) * window_size - h_old w_pad = (w_old // window_size + 1) * window_size - w_old img_lq = torch.cat([img_lq, torch.flip(img_lq, [2])], 2)[:, :, :h_old + h_pad, :] img_lq = torch.cat([img_lq, torch.flip(img_lq, [3])], 3)[:, :, :, :w_old + w_pad] output = sr_model(img_lq) output = output[..., :h_old * 4, :w_old * 4] # save image output = output.data.squeeze().float().cpu().clamp_(0, 1).numpy() if output.ndim == 3: output = np.transpose(output[[2, 1, 0], :, :], (1, 2, 0)) # CHW-RGB to HCW-BGR output = (output * 255.0).round().astype(np.uint8) # float32 to uint8 return output def denoise(input_img): window_size = 8 # read image img_lq = input_img.astype(np.float32) / 255. img_lq = np.transpose(img_lq if img_lq.shape[2] == 1 else img_lq[:, :, [2, 1, 0]], (2, 0, 1)) # HCW-BGR to CHW-RGB img_lq = torch.from_numpy(img_lq).float().unsqueeze(0).to(device) # CHW-RGB to NCHW-RGB # inference with torch.no_grad(): # pad input image to be a multiple of window_size _, _, h_old, w_old = img_lq.size() h_pad = (h_old // window_size + 1) * window_size - h_old w_pad = (w_old // window_size + 1) * window_size - w_old img_lq = torch.cat([img_lq, torch.flip(img_lq, [2])], 2)[:, :, :h_old + h_pad, :] img_lq = torch.cat([img_lq, torch.flip(img_lq, [3])], 3)[:, :, :, :w_old + w_pad] output = denoise_model(img_lq) output = output[..., :h_old * 4, :w_old * 4] # save image output = output.data.squeeze().float().cpu().clamp_(0, 1).numpy() if output.ndim == 3: output = np.transpose(output[[2, 1, 0], :, :], (1, 2, 0)) # CHW-RGB to HCW-BGR output = (output * 255.0).round().astype(np.uint8) # float32 to uint8 return output title = " AISeed AI Application Demo " description = "# A Demo of Deep Learning for Image Restoration" example_list = [["examples/" + example] for example in os.listdir("examples")] with gr.Blocks() as demo: demo.title = title gr.Markdown(description) with gr.Row(): with gr.Column(): im = gr.Image(label="Input Image") im_2 = gr.Image(label="Enhanced Image") with gr.Column(): btn1 = gr.Button(value="Enhance Resolution") btn1.click(sr, inputs=[im], outputs=[im_2]) btn2 = gr.Button(value="Denoise") btn2.click(denoise, inputs=[im], outputs=[im_2]) gr.Examples(examples=example_list, inputs=[im], outputs=[im_2]) if __name__ == "__main__": demo.launch()