Spaces:
Runtime error
Runtime error
import os | |
from typing import Dict | |
import gradio as gr | |
import pandas as pd | |
from chat_task.chat import generate_chat | |
from doc_qa_task.doc_qa import generate_doc_qa | |
from examples import ( | |
load_examples, | |
preprocess_docqa_examples, | |
preprocess_extraction_examples, | |
preprocess_qa_generator_examples, | |
) | |
from extract_data_task.extract import extract_slots | |
from plugin_task.api import api_plugin_chat | |
from qa_generator_task.generate_qa import generate_qa_pairs | |
from plugin_task.plugins import PLUGIN_JSON_SCHEMA | |
abs_path = os.path.abspath(__file__) | |
current_dir = os.path.dirname(abs_path) | |
statistic_path = os.path.join(current_dir, "images") | |
load_examples() | |
def clear_session(): | |
"""Clears the chat session.""" | |
return "", None | |
def clear_plugin_session(session: Dict): | |
"""Clears the plugin session.""" | |
session.clear() | |
return session, None, None | |
def show_custom_fallback_textbox(x): | |
if x == "自定义话术": | |
return [gr.Row(visible=True), gr.Textbox()] | |
else: | |
return [gr.Row(visible=False), gr.Textbox()] | |
def validate_field_word_count( | |
input_text: str, description: str, max_word_count: int = 3000 | |
): | |
""" | |
Validate the input text for word count | |
:param input_text: | |
:return: | |
""" | |
if len(input_text) == 0: | |
raise gr.Error(f"{description} can not be empty") | |
if len(input_text) > max_word_count: | |
raise gr.Error(f"The number of words in the {description} cannot exceed {max_word_count} words") | |
def validate_chat(input_text: str): | |
""" | |
Validate the input text | |
:param input_text: | |
:return: | |
""" | |
validate_field_word_count(input_text, "Input", 500) | |
def validate_doc_qa( | |
input_text: str, | |
doc_df: "pd.DataFrame", | |
fallback_ratio: str, | |
fallback_text_input: str, | |
): | |
""" | |
Validate fields of doc_qa | |
:param input_text: | |
:param doc_df: | |
:param fallback_ratio: | |
:param fallback_text_input: | |
:return: | |
""" | |
# add all the doc ids to the input text | |
if fallback_ratio == "自定义话术": | |
validate_field_word_count(fallback_text_input, "自定义话术", 100) | |
validate_field_word_count(input_text, "输入", 500) | |
page_content_full_text = ( | |
" ".join(doc_df["文档片段名称"].tolist()) | |
+ " " | |
+ " ".join(doc_df["文档片段内容"].tolist()) | |
) | |
validate_field_word_count(page_content_full_text, "文档信息", 2500) | |
def validate_qa_pair_generator(input_text: str): | |
""" | |
Validate the input text | |
:param input_text: | |
:return: | |
""" | |
return validate_field_word_count(input_text, "输入") | |
def validate_extraction( | |
input_text: str, | |
extraction_df: "pd.DataFrame", | |
): | |
""" | |
Validate fields of extraction | |
""" | |
extraction_full_text = ( | |
" ".join(extraction_df["字段名称"].tolist()) | |
+ " " | |
+ " ".join(extraction_df["字段描述"].tolist()) | |
) | |
validate_field_word_count(input_text, "输入", 1500) | |
validate_field_word_count(extraction_full_text, "待抽取字段描述", 1500) | |
def validate_plugin(input_text: str): | |
""" | |
Validate the input text | |
:param input_text: | |
:return: | |
""" | |
validate_field_word_count(input_text, "输入", 500) | |
with gr.Blocks( | |
title="Orion-14B", | |
theme="shivi/calm_seafoam@>=0.0.1,<1.0.0", | |
) as demo: | |
def user(user_message, history): | |
return user_message, (history or []) + [[user_message, ""]] | |
gr.Markdown( | |
""" | |
<div style="overflow: hidden;color:#fff;display: flex;flex-direction: column;align-items: center; position: relative; width: 100%; height: 180px;background-size: cover; background-image: url(https://www.orionstar.com/res/orics/down/ow001_20240119_8369eca9013416109a2303bf4e329140.png);"> | |
<img style="width: 130px;height: 60px;position: absolute;top:10px;left:10px" src="https://www.orionstar.com/res/orics/down/ow001_20240122_c5c29171cf230aefa1cdde31f6e02041.png"/> | |
<img style="min-width: 1416px; width: 1416px;height: 100px;margin-top: 30px;" src="https://www.orionstar.com/res/orics/down/ow001_20240122_e4b5c0fb891c5bb269ea1405f160a21f.png"/> | |
<span style="margin-top: 10px;font-size: 12px;">Please Support Us by Clicking the Star on <a href="https://github.com/OrionStarAI/Orion" style="color: white;">Github</a></span> | |
</div> | |
""" | |
) | |
with gr.Tab("Fundamental Capabilities"): | |
chatbot = gr.Chatbot( | |
label="Orion-14B-Chat", | |
elem_classes="control-height", | |
show_copy_button=True, | |
min_width=1368, | |
height=416, | |
) | |
chat_text_input = gr.Textbox(label="Input", min_width=1368) | |
with gr.Row(): | |
with gr.Column(scale=2): | |
gr.Examples( | |
[ | |
"I'm planning a vacation to Japan. Can you suggest a one-week itinerary including must-visit places and local cuisines to try?", | |
"How do black holes operate?", | |
"Can you tell me a joke?", | |
"Can you write a short story about a time-traveling detective who solves historical mysteries?", | |
"I have chicken, rice, and bell peppers in my kitchen. Can you suggest an easy recipe I can make with these ingredients?", | |
], | |
chat_text_input, | |
label="Try asking", | |
) | |
with gr.Column(scale=1): | |
with gr.Row(variant="compact"): | |
clear_history = gr.Button( | |
"Clear History", | |
min_width="17", | |
size="sm", | |
scale=1, | |
icon=os.path.join(statistic_path, "clear.png"), | |
) | |
submit = gr.Button( | |
"Send Message", | |
variant="primary", | |
min_width="17", | |
size="sm", | |
scale=1, | |
icon=os.path.join(statistic_path, "send.svg"), | |
) | |
chat_text_input.submit( | |
fn=validate_chat, inputs=[chat_text_input], outputs=[], queue=False | |
).success( | |
user, [chat_text_input, chatbot], [chat_text_input, chatbot], queue=False | |
).success( | |
fn=generate_chat, | |
inputs=[chat_text_input, chatbot], | |
outputs=[chat_text_input, chatbot], | |
) | |
submit.click( | |
fn=validate_chat, inputs=[chat_text_input], outputs=[], queue=False | |
).success( | |
user, [chat_text_input, chatbot], [chat_text_input, chatbot], queue=False | |
).success( | |
fn=generate_chat, | |
inputs=[chat_text_input, chatbot], | |
outputs=[chat_text_input, chatbot], | |
api_name="chat", | |
) | |
clear_history.click( | |
fn=clear_session, inputs=[], outputs=[chat_text_input, chatbot], queue=False | |
) | |
with gr.Tab("Document-Based Answering"): | |
with gr.Row(): | |
with gr.Column(scale=3, min_width=357, variant="panel"): | |
gr.Markdown( | |
'<span style="color:rgba(0, 0, 0, 0.5); font-size: 14px; font-weight: 400; line-height: 28px; letter-spacing: 0em; text-align: left; width: 42px; height: 14px; left: 36px; top: 255px;">配置项</span>' | |
) | |
citations_radio = gr.Radio( | |
["开启引用", "关闭引用"], label="引用", value="关闭引用" | |
) | |
fallback_radio = gr.Radio( | |
["使用大模型知识", "自定义话术"], | |
label="超纲问题回复", | |
value="自定义话术", | |
) | |
fallback_text_input = gr.Textbox( | |
label="自定义话术", | |
value="抱歉,我还在学习中,暂时无法回答您的问题。", | |
) | |
gr.Markdown( | |
'<span style="color:rgba(0, 0, 0, 0.5); font-size: 14px; font-weight: 400; line-height: 28px; letter-spacing: 0em; text-align: left; width: 42px; height: 14px; left: 36px; top: 255px;">文档信息</span>' | |
) | |
doc_df = gr.Dataframe( | |
headers=["文档片段内容", "文档片段名称"], | |
datatype=["str", "str"], | |
row_count=6, | |
col_count=(2, "fixed"), | |
label="", | |
interactive=True, | |
wrap=True, | |
elem_classes="control-height", | |
height=300, | |
) | |
with gr.Column(scale=2, min_width=430): | |
chatbot = gr.Chatbot( | |
label="适用场景:预期LLM通过自由知识回答", | |
elem_classes="control-height", | |
show_copy_button=True, | |
min_width=999, | |
height=419, | |
) | |
doc_qa_input = gr.Textbox(label="输入", min_width=999, max_lines=10) | |
with gr.Row(): | |
with gr.Column(scale=2): | |
gr.Examples( | |
[ | |
"哪些情况下不能超车?", | |
"参观须知", | |
"青岛啤酒酒精含量是多少?", | |
], | |
doc_qa_input, | |
label="试试问", | |
cache_examples=True, | |
fn=preprocess_docqa_examples, | |
outputs=[doc_df], | |
) | |
with gr.Column(scale=1): | |
with gr.Row(variant="compact"): | |
clear_history = gr.Button( | |
"清除历史", | |
min_width="17", | |
size="sm", | |
scale=1, | |
icon=os.path.join(statistic_path, "clear.png"), | |
) | |
submit = gr.Button( | |
"发送", | |
variant="primary", | |
min_width="17", | |
size="sm", | |
scale=1, | |
icon=os.path.join(statistic_path, "send.svg"), | |
) | |
doc_qa_input.submit( | |
fn=validate_doc_qa, | |
inputs=[ | |
doc_qa_input, | |
doc_df, | |
fallback_radio, | |
fallback_text_input, | |
], | |
outputs=[], | |
queue=False, | |
).success( | |
user, [doc_qa_input, chatbot], [doc_qa_input, chatbot], queue=False | |
).success( | |
fn=generate_doc_qa, | |
inputs=[ | |
doc_qa_input, | |
chatbot, | |
doc_df, | |
fallback_radio, | |
fallback_text_input, | |
citations_radio, | |
], | |
outputs=[doc_qa_input, chatbot], | |
scroll_to_output=True, | |
api_name="doc_qa", | |
) | |
submit.click( | |
fn=validate_doc_qa, | |
inputs=[ | |
doc_qa_input, | |
doc_df, | |
fallback_radio, | |
fallback_text_input, | |
], | |
outputs=[], | |
queue=False, | |
).success( | |
user, [doc_qa_input, chatbot], [doc_qa_input, chatbot], queue=False | |
).success( | |
fn=generate_doc_qa, | |
inputs=[ | |
doc_qa_input, | |
chatbot, | |
doc_df, | |
fallback_radio, | |
fallback_text_input, | |
citations_radio, | |
], | |
outputs=[doc_qa_input, chatbot], | |
scroll_to_output=True, | |
) | |
clear_history.click( | |
fn=lambda x: (None, None, None), | |
inputs=[], | |
outputs=[doc_df, doc_qa_input, chatbot], | |
queue=False, | |
) | |
with gr.Tab("Plugin"): | |
with gr.Row(): | |
with gr.Column(scale=1): | |
gr.Markdown( | |
'<span style="color:rgba(0, 0, 0, 0.5); font-size: 14px; font-weight: 400; line-height: 28px; letter-spacing: 0em; text-align: left; width: 42px; height: 14px; left: 36px; top: 255px;">配置项</span>' | |
) | |
radio_plugins = [ | |
gr.Radio( | |
["开启", "关闭"], | |
label=plugin_json["name_for_human"], | |
value="开启", | |
) | |
for plugin_json in PLUGIN_JSON_SCHEMA | |
] | |
with gr.Column(scale=3): | |
session = gr.State(value=dict()) | |
chatbot = gr.Chatbot( | |
label="适用场景:需要LLM调用API解决问题", | |
elem_classes="control-height", | |
show_copy_button=True, | |
) | |
plugin_text_input = gr.Textbox(label="输入") | |
with gr.Row(): | |
with gr.Column(scale=2): | |
gr.Examples( | |
[ | |
"北京天气怎么样?", | |
"查询物流信息", | |
"每日壁纸", | |
"bing今天的壁纸是什么", | |
"查询手机号码归属地", | |
], | |
plugin_text_input, | |
label="试试问", | |
) | |
with gr.Column(scale=1): | |
with gr.Row(variant="compact"): | |
clear_history = gr.Button( | |
"清除历史", | |
min_width="17", | |
size="sm", | |
scale=1, | |
icon=os.path.join(statistic_path, "clear.png"), | |
) | |
submit = gr.Button( | |
"发送", | |
variant="primary", | |
min_width="17", | |
size="sm", | |
scale=1, | |
icon=os.path.join(statistic_path, "send.svg"), | |
) | |
plugin_text_input.submit( | |
fn=validate_plugin, | |
inputs=[ | |
plugin_text_input, | |
], | |
outputs=[], | |
queue=False, | |
).success( | |
user, | |
[plugin_text_input, chatbot], | |
[plugin_text_input, chatbot], | |
scroll_to_output=True, | |
).success( | |
fn=api_plugin_chat, | |
inputs=[session, plugin_text_input, chatbot, *radio_plugins], | |
outputs=[session, plugin_text_input, chatbot], | |
scroll_to_output=True, | |
) | |
submit.click( | |
fn=validate_plugin, | |
inputs=[ | |
plugin_text_input, | |
], | |
outputs=[], | |
queue=False, | |
).success( | |
user, | |
[plugin_text_input, chatbot], | |
[plugin_text_input, chatbot], | |
scroll_to_output=True, | |
).success( | |
fn=api_plugin_chat, | |
inputs=[session, plugin_text_input, chatbot, *radio_plugins], | |
outputs=[session, plugin_text_input, chatbot], | |
api_name="plugin", | |
scroll_to_output=True, | |
) | |
clear_history.click( | |
fn=clear_plugin_session, | |
inputs=[session], | |
outputs=[session, plugin_text_input, chatbot], | |
queue=False, | |
) | |
with gr.Tab("Generate Question-Answer Pairs"): | |
with gr.Row(equal_height=True): | |
qa_generator_output = gr.Code( | |
language="json", | |
show_label=False, | |
min_width=1368, | |
) | |
with gr.Row(): | |
qa_generator_input = gr.Textbox( | |
label="输入", | |
show_label=True, | |
info="", | |
min_width=1368, | |
lines=5, | |
max_lines=10, | |
) | |
with gr.Row(): | |
with gr.Column(scale=2): | |
gr.Examples( | |
[ | |
"第一章 总 则 \n第...", | |
"金字塔,在建筑学上是...", | |
"山西老陈醋是以高粱、...", | |
"室内装饰构造虚拟仿真...", | |
"猎户星空(Orion...", | |
], | |
qa_generator_input, | |
label="试试问", | |
cache_examples=True, | |
fn=preprocess_qa_generator_examples, | |
outputs=[qa_generator_input], | |
) | |
with gr.Column(scale=1): | |
with gr.Row(variant="compact"): | |
clear = gr.Button( | |
"清除", | |
min_width="17", | |
size="sm", | |
scale=1, | |
icon=os.path.join(statistic_path, "clear.png"), | |
) | |
submit = gr.Button( | |
"发送", | |
variant="primary", | |
min_width="17", | |
size="sm", | |
scale=1, | |
icon=os.path.join(statistic_path, "send.svg"), | |
) | |
submit.click( | |
fn=validate_qa_pair_generator, | |
inputs=[qa_generator_input], | |
outputs=[], | |
).success( | |
fn=generate_qa_pairs, | |
inputs=[qa_generator_input], | |
outputs=[qa_generator_output, qa_generator_input], | |
scroll_to_output=True, | |
api_name="qa_generator", | |
) | |
clear.click( | |
fn=lambda x: ("", ""), | |
inputs=[], | |
outputs=[qa_generator_input, qa_generator_output], | |
queue=False, | |
) | |
with gr.Tab("Extract Data"): | |
extract_outpu_df = gr.Dataframe( | |
label="", | |
headers=["字段名称", "字段抽取结果"], | |
datatype=["str", "str"], | |
col_count=(2, "fixed"), | |
wrap=True, | |
elem_classes="control-height", | |
height=234, | |
row_count=5, | |
) | |
extract_input = gr.Textbox(label="输入", lines=5, min_width=1368, max_lines=10) | |
extraction_df = gr.Dataframe( | |
headers=["字段名称", "字段描述"], | |
datatype=["str", "str"], | |
row_count=3, | |
col_count=(2, "fixed"), | |
label="", | |
interactive=True, | |
wrap=True, | |
elem_classes="control-height", | |
height=180, | |
) | |
with gr.Row(): | |
with gr.Column(scale=2): | |
gr.Examples( | |
["第一条合同当...", "发票编号: IN...", "发件人:John..."], | |
extract_input, | |
label="试试问", | |
cache_examples=True, | |
fn=preprocess_extraction_examples, | |
outputs=[extract_input, extraction_df], | |
) | |
with gr.Column(scale=1): | |
with gr.Row(variant="compact"): | |
clear = gr.Button( | |
"清除历史", | |
min_width="17", | |
size="sm", | |
scale=1, | |
icon=os.path.join(statistic_path, "clear.png"), | |
) | |
submit = gr.Button( | |
"发送", | |
variant="primary", | |
min_width="17", | |
size="sm", | |
scale=1, | |
icon=os.path.join(statistic_path, "send.svg"), | |
) | |
submit.click( | |
fn=validate_extraction, | |
inputs=[extract_input, extraction_df], | |
outputs=[], | |
).success( | |
fn=extract_slots, | |
inputs=[extract_input, extraction_df], | |
outputs=[extract_outpu_df], | |
scroll_to_output=True, | |
api_name="extract", | |
) | |
clear.click( | |
fn=lambda x: ("", None, None), | |
inputs=[], | |
outputs=[ | |
extract_input, | |
extraction_df, | |
extract_outpu_df, | |
], | |
queue=False, | |
) | |
if __name__ == "__main__": | |
demo.queue(api_open=False, max_size=40).launch( | |
height=800, | |
share=False, | |
server_name="0.0.0.0", | |
show_api=False, | |
max_threads=4, | |
) | |