Spaces:
Runtime error
Runtime error
File size: 8,444 Bytes
63923af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 |
import os
from typing import Dict, List, Optional, Tuple, Union
import gradio as gr
from common.call_llm import chat, chat_stream_generator
from plugin_task.model import Plugin, ReActStep
from plugin_task.plugins import PLUGIN_JSON_SCHEMA, PLUGINS
from plugin_task.prompt import (
FILLING_SLOT_PROMPT,
FINAL_PROMPT,
INTENT_RECOGNITION_PROMPT,
)
from plugin_task.util import (
build_prompt_plugin_variables,
parse_reAct_step,
plugin_parameter_validator,
)
PLUGIN_ENDPOINT = os.environ.get("PLUGIN_ENDPOINT")
def api_plugin_chat(
session: Dict,
message: str,
chat_history: List[List[str]],
*radio_plugins,
):
"""调用插件"""
if not check_in_plugin_session(session):
plugins = prepare_plugins(radio_plugins)
if not plugins:
gr.Warning("没有启用插件")
return
intention, reAct_step = intent_recognition(message, plugins)
if intention in ("ask_user_for_required_params", "plugin"):
session["origin_message"] = message
session["choice_plugin"] = reAct_step.thought["tool_to_use_for_user"]
session["reAct_step"] = [reAct_step]
else:
intention, reAct_step = filling_slot_with_loop(session, message)
print(
f"[API_PLUGIN_CHAT]. message: {message},\n intention: {intention},\n session: {session}\n"
+ "=" * 25
+ "END"
+ "=" * 25
)
if intention == "fail":
chat_history[-1][1] = reAct_step
session.clear()
yield session, None, chat_history
return
if intention == "ask_user_for_required_params":
chat_history[-1][1] = reAct_step.action_input.get("question", "")
yield session, None, chat_history
if intention == "plugin":
yield from call_final_answer(session, reAct_step, chat_history)
if intention == "chat":
yield from call_chat(session, message, chat_history)
if intention == "end":
session.clear()
chat_history[-1][1] = "[系统消息]:当前插件对话结束"
yield session, None, chat_history
return
return
def filling_slot_with_loop(
session: Dict, message: str, retry: int = 3
) -> Tuple[str, Optional[Union[ReActStep, str]]]:
"""处理填槽"""
plugin = PLUGINS[session["choice_plugin"]]
while True:
lastest_reAct_step = session["reAct_step"][-1]
if not lastest_reAct_step.observation:
lastest_reAct_step.observation = {"user_answer": message}
reAct_step_str = "\n".join(step.to_str() for step in session["reAct_step"])
ask_content = FILLING_SLOT_PROMPT.format(
plugin_name=plugin.unique_name_for_model,
description_for_human=plugin.description_for_human,
parameter_schema=plugin.parameter_schema,
question=session["origin_message"],
reAct_step_str=reAct_step_str,
)
model_response = chat(
[{"content": ask_content, "role": "user"}],
stop="Observation",
endpoint=PLUGIN_ENDPOINT,
)
print(
f"[FILLING_SLOT_WITH_LOOP] message: {message} ask_content: {ask_content}\n model_response: {model_response}\n"
+ "=" * 25
+ "END"
+ "=" * 25
)
reAct_step = parse_reAct_step(model_response)
if not reAct_step:
if (retry := retry - 1) < 0:
return "fail", model_response
continue
tool_to_use_for_user = reAct_step.thought.get("tool_to_use_for_user")
known_parameter = reAct_step.thought.get("known_params", {})
if (
reAct_step.action == "end_conversation"
or tool_to_use_for_user == "end_conversation"
):
return "end", reAct_step
if (
reAct_step.action == "ASK_USER_FOR_REQUIRED_PARAMS"
and tool_to_use_for_user == plugin.unique_name_for_model
):
passed, _ = plugin_parameter_validator(
known_parameter,
tool_to_use_for_user,
)
if passed:
reAct_step.action = tool_to_use_for_user
action = "plugin"
else:
action = "ask_user_for_required_params"
session["reAct_step"].append(reAct_step)
return action, reAct_step
if (
reAct_step.action == plugin.unique_name_for_model
and tool_to_use_for_user == plugin.unique_name_for_model
):
passed, invalid_info = plugin_parameter_validator(
known_parameter,
tool_to_use_for_user,
)
if not passed:
reAct_step.observation = {"tool_parameters_verification": invalid_info}
session["reAct_step"].append(reAct_step)
continue
session["reAct_step"].append(reAct_step)
return "plugin", reAct_step
def call_chat(session: Dict, message: str, chat_history: List[List[str]]):
from chat_task.chat import generate_chat
for chunk in generate_chat(message, chat_history, PLUGIN_ENDPOINT):
yield session, *chunk
def check_in_plugin_session(session: Dict) -> bool:
"""检查是否在插件会话中"""
return bool(session)
def prepare_plugins(
radio_plugins: List[str],
) -> List[Plugin]:
return [
PLUGINS[PLUGIN_JSON_SCHEMA[plugin_idx]["unique_name_for_model"]]
for plugin_idx, plugin_status in enumerate(radio_plugins)
if plugin_status == "开启"
]
def intent_recognition(
message: str, choice_plugins: List[Plugin]
) -> Tuple[str, Union[ReActStep, str]]:
"""意图识别"""
plugins, plugin_names = build_prompt_plugin_variables(choice_plugins)
ask_content = INTENT_RECOGNITION_PROMPT.format(
plugins=plugins, plugin_names=plugin_names, question=message
)
print(
f"[INTENT_RECOGNITION] message:{message} ask_content: {ask_content}"
+ "=" * 25
+ "END"
+ "=" * 25
)
retry = 3
while retry != 0:
model_response = chat(
[{"content": ask_content, "role": "user"}],
stop="Observation",
endpoint=PLUGIN_ENDPOINT,
)
reAct_step = parse_reAct_step(model_response)
if reAct_step:
break
retry -= 1
if not reAct_step:
print(f"[INTENT_RECOGNITION] model fail: {model_response}")
return "fail", model_response
tool_to_use_for_user = reAct_step.thought.get("tool_to_use_for_user")
known_params = reAct_step.thought.get("known_params", {})
if reAct_step.action == "TOOL_OTHER":
return "chat", reAct_step
elif (
reAct_step.action == "end_conversation"
and tool_to_use_for_user == "end_conversation"
):
return "end", reAct_step
elif tool_to_use_for_user in plugin_names.split(","):
if reAct_step.action in ("ASK_USER_FOR_INTENT", "ASK_USER_FOR_REQUIRED_PARAMS"):
passed, _ = plugin_parameter_validator(
known_params,
tool_to_use_for_user,
)
if passed:
reAct_step.action = tool_to_use_for_user
return "plugin", reAct_step
return "ask_user_for_required_params", reAct_step
if reAct_step.action in plugin_names.split(","):
return "plugin", reAct_step
return "chat", reAct_step
def call_final_answer(session: Dict, reAct_step: ReActStep, history: List[List[str]]):
"""调用最终回答"""
plugin_result = PLUGINS[reAct_step.action].run(**reAct_step.action_input)
lastest_reAct_step = session["reAct_step"][-1]
lastest_reAct_step.observation = {"tool_response": plugin_result}
reAct_step_str = "\n".join(step.to_str() for step in session["reAct_step"])
final_prompt = FINAL_PROMPT.format(
question=session["origin_message"],
reAct_step_str=reAct_step_str,
)
print(
f"[CALL_FINAL_ANSWER] final_prompt: {final_prompt}\n"
+ "=" * 25
+ "END"
+ "=" * 25
)
stream_response = chat_stream_generator(
[{"content": final_prompt, "role": "user"}],
endpoint=PLUGIN_ENDPOINT,
)
for character in stream_response:
history[-1][1] += character
yield session, None, history
session.clear()
|