File size: 8,444 Bytes
63923af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
import os
from typing import Dict, List, Optional, Tuple, Union

import gradio as gr

from common.call_llm import chat, chat_stream_generator
from plugin_task.model import Plugin, ReActStep
from plugin_task.plugins import PLUGIN_JSON_SCHEMA, PLUGINS
from plugin_task.prompt import (
    FILLING_SLOT_PROMPT,
    FINAL_PROMPT,
    INTENT_RECOGNITION_PROMPT,
)
from plugin_task.util import (
    build_prompt_plugin_variables,
    parse_reAct_step,
    plugin_parameter_validator,
)

PLUGIN_ENDPOINT = os.environ.get("PLUGIN_ENDPOINT")


def api_plugin_chat(
    session: Dict,
    message: str,
    chat_history: List[List[str]],
    *radio_plugins,
):
    """调用插件"""

    if not check_in_plugin_session(session):
        plugins = prepare_plugins(radio_plugins)
        if not plugins:
            gr.Warning("没有启用插件")
            return

        intention, reAct_step = intent_recognition(message, plugins)
        if intention in ("ask_user_for_required_params", "plugin"):
            session["origin_message"] = message
            session["choice_plugin"] = reAct_step.thought["tool_to_use_for_user"]
            session["reAct_step"] = [reAct_step]

    else:
        intention, reAct_step = filling_slot_with_loop(session, message)

    print(
        f"[API_PLUGIN_CHAT]. message: {message},\n intention: {intention},\n session: {session}\n"
        + "=" * 25
        + "END"
        + "=" * 25
    )

    if intention == "fail":
        chat_history[-1][1] = reAct_step
        session.clear()
        yield session, None, chat_history
        return

    if intention == "ask_user_for_required_params":
        chat_history[-1][1] = reAct_step.action_input.get("question", "")
        yield session, None, chat_history

    if intention == "plugin":
        yield from call_final_answer(session, reAct_step, chat_history)

    if intention == "chat":
        yield from call_chat(session, message, chat_history)

    if intention == "end":
        session.clear()
        chat_history[-1][1] = "[系统消息]:当前插件对话结束"
        yield session, None, chat_history
        return
    return


def filling_slot_with_loop(
    session: Dict, message: str, retry: int = 3
) -> Tuple[str, Optional[Union[ReActStep, str]]]:
    """处理填槽"""
    plugin = PLUGINS[session["choice_plugin"]]

    while True:
        lastest_reAct_step = session["reAct_step"][-1]
        if not lastest_reAct_step.observation:
            lastest_reAct_step.observation = {"user_answer": message}

        reAct_step_str = "\n".join(step.to_str() for step in session["reAct_step"])

        ask_content = FILLING_SLOT_PROMPT.format(
            plugin_name=plugin.unique_name_for_model,
            description_for_human=plugin.description_for_human,
            parameter_schema=plugin.parameter_schema,
            question=session["origin_message"],
            reAct_step_str=reAct_step_str,
        )

        model_response = chat(
            [{"content": ask_content, "role": "user"}],
            stop="Observation",
            endpoint=PLUGIN_ENDPOINT,
        )
        print(
            f"[FILLING_SLOT_WITH_LOOP] message: {message} ask_content: {ask_content}\n model_response: {model_response}\n"
            + "=" * 25
            + "END"
            + "=" * 25
        )
        reAct_step = parse_reAct_step(model_response)
        if not reAct_step:
            if (retry := retry - 1) < 0:
                return "fail", model_response

            continue

        tool_to_use_for_user = reAct_step.thought.get("tool_to_use_for_user")
        known_parameter = reAct_step.thought.get("known_params", {})

        if (
            reAct_step.action == "end_conversation"
            or tool_to_use_for_user == "end_conversation"
        ):
            return "end", reAct_step

        if (
            reAct_step.action == "ASK_USER_FOR_REQUIRED_PARAMS"
            and tool_to_use_for_user == plugin.unique_name_for_model
        ):
            passed, _ = plugin_parameter_validator(
                known_parameter,
                tool_to_use_for_user,
            )
            if passed:
                reAct_step.action = tool_to_use_for_user
                action = "plugin"
            else:
                action = "ask_user_for_required_params"

            session["reAct_step"].append(reAct_step)
            return action, reAct_step

        if (
            reAct_step.action == plugin.unique_name_for_model
            and tool_to_use_for_user == plugin.unique_name_for_model
        ):
            passed, invalid_info = plugin_parameter_validator(
                known_parameter,
                tool_to_use_for_user,
            )

            if not passed:
                reAct_step.observation = {"tool_parameters_verification": invalid_info}
                session["reAct_step"].append(reAct_step)
                continue

            session["reAct_step"].append(reAct_step)
            return "plugin", reAct_step


def call_chat(session: Dict, message: str, chat_history: List[List[str]]):
    from chat_task.chat import generate_chat

    for chunk in generate_chat(message, chat_history, PLUGIN_ENDPOINT):
        yield session, *chunk


def check_in_plugin_session(session: Dict) -> bool:
    """检查是否在插件会话中"""
    return bool(session)


def prepare_plugins(
    radio_plugins: List[str],
) -> List[Plugin]:
    return [
        PLUGINS[PLUGIN_JSON_SCHEMA[plugin_idx]["unique_name_for_model"]]
        for plugin_idx, plugin_status in enumerate(radio_plugins)
        if plugin_status == "开启"
    ]


def intent_recognition(
    message: str, choice_plugins: List[Plugin]
) -> Tuple[str, Union[ReActStep, str]]:
    """意图识别"""

    plugins, plugin_names = build_prompt_plugin_variables(choice_plugins)
    ask_content = INTENT_RECOGNITION_PROMPT.format(
        plugins=plugins, plugin_names=plugin_names, question=message
    )

    print(
        f"[INTENT_RECOGNITION] message:{message} ask_content: {ask_content}"
        + "=" * 25
        + "END"
        + "=" * 25
    )

    retry = 3
    while retry != 0:
        model_response = chat(
            [{"content": ask_content, "role": "user"}],
            stop="Observation",
            endpoint=PLUGIN_ENDPOINT,
        )

        reAct_step = parse_reAct_step(model_response)
        if reAct_step:
            break
        retry -= 1

    if not reAct_step:
        print(f"[INTENT_RECOGNITION] model fail: {model_response}")
        return "fail", model_response

    tool_to_use_for_user = reAct_step.thought.get("tool_to_use_for_user")
    known_params = reAct_step.thought.get("known_params", {})

    if reAct_step.action == "TOOL_OTHER":
        return "chat", reAct_step

    elif (
        reAct_step.action == "end_conversation"
        and tool_to_use_for_user == "end_conversation"
    ):
        return "end", reAct_step

    elif tool_to_use_for_user in plugin_names.split(","):
        if reAct_step.action in ("ASK_USER_FOR_INTENT", "ASK_USER_FOR_REQUIRED_PARAMS"):
            passed, _ = plugin_parameter_validator(
                known_params,
                tool_to_use_for_user,
            )
            if passed:
                reAct_step.action = tool_to_use_for_user
                return "plugin", reAct_step

            return "ask_user_for_required_params", reAct_step

        if reAct_step.action in plugin_names.split(","):
            return "plugin", reAct_step

    return "chat", reAct_step


def call_final_answer(session: Dict, reAct_step: ReActStep, history: List[List[str]]):
    """调用最终回答"""
    plugin_result = PLUGINS[reAct_step.action].run(**reAct_step.action_input)

    lastest_reAct_step = session["reAct_step"][-1]
    lastest_reAct_step.observation = {"tool_response": plugin_result}

    reAct_step_str = "\n".join(step.to_str() for step in session["reAct_step"])
    final_prompt = FINAL_PROMPT.format(
        question=session["origin_message"],
        reAct_step_str=reAct_step_str,
    )

    print(
        f"[CALL_FINAL_ANSWER] final_prompt: {final_prompt}\n"
        + "=" * 25
        + "END"
        + "=" * 25
    )
    stream_response = chat_stream_generator(
        [{"content": final_prompt, "role": "user"}],
        endpoint=PLUGIN_ENDPOINT,
    )

    for character in stream_response:
        history[-1][1] += character
        yield session, None, history

    session.clear()