File size: 27,956 Bytes
9d3cb0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
import torch
import math
import numpy as np

from torch import nn
from torch.nn import functional as F
from torchaudio import transforms as T
from alias_free_torch import Activation1d
from .nn.layers import WNConv1d, WNConvTranspose1d
from typing import Literal, Dict, Any

# from .inference.sampling import sample
from .utils import prepare_audio
from .blocks import SnakeBeta
from .bottleneck import Bottleneck, DiscreteBottleneck
from .factory import create_pretransform_from_config, create_bottleneck_from_config
from .pretransforms import Pretransform

def checkpoint(function, *args, **kwargs):
    kwargs.setdefault("use_reentrant", False)
    return torch.utils.checkpoint.checkpoint(function, *args, **kwargs)

def get_activation(activation: Literal["elu", "snake", "none"], antialias=False, channels=None) -> nn.Module:
    if activation == "elu":
        act = nn.ELU()
    elif activation == "snake":
        act = SnakeBeta(channels)
    elif activation == "none":
        act = nn.Identity()
    else:
        raise ValueError(f"Unknown activation {activation}")
    
    if antialias:
        act = Activation1d(act)
    
    return act

class ResidualUnit(nn.Module):
    def __init__(self, in_channels, out_channels, dilation, use_snake=False, antialias_activation=False):
        super().__init__()
        
        self.dilation = dilation

        padding = (dilation * (7-1)) // 2

        self.layers = nn.Sequential(
            get_activation("snake" if use_snake else "elu", antialias=antialias_activation, channels=out_channels),
            WNConv1d(in_channels=in_channels, out_channels=out_channels,
                      kernel_size=7, dilation=dilation, padding=padding),
            get_activation("snake" if use_snake else "elu", antialias=antialias_activation, channels=out_channels),
            WNConv1d(in_channels=out_channels, out_channels=out_channels,
                      kernel_size=1)
        )

    def forward(self, x):
        res = x
        
        #x = checkpoint(self.layers, x)
        x = self.layers(x)

        return x + res

class EncoderBlock(nn.Module):
    def __init__(self, in_channels, out_channels, stride, use_snake=False, antialias_activation=False):
        super().__init__()

        self.layers = nn.Sequential(
            ResidualUnit(in_channels=in_channels,
                         out_channels=in_channels, dilation=1, use_snake=use_snake),
            ResidualUnit(in_channels=in_channels,
                         out_channels=in_channels, dilation=3, use_snake=use_snake),
            ResidualUnit(in_channels=in_channels,
                         out_channels=in_channels, dilation=9, use_snake=use_snake),
            get_activation("snake" if use_snake else "elu", antialias=antialias_activation, channels=in_channels),
            WNConv1d(in_channels=in_channels, out_channels=out_channels,
                      kernel_size=2*stride, stride=stride, padding=math.ceil(stride/2)),
        )

    def forward(self, x):
        return self.layers(x)

class DecoderBlock(nn.Module):
    def __init__(self, in_channels, out_channels, stride, use_snake=False, antialias_activation=False, use_nearest_upsample=False):
        super().__init__()

        if use_nearest_upsample:
            upsample_layer = nn.Sequential(
                nn.Upsample(scale_factor=stride, mode="nearest"),
                WNConv1d(in_channels=in_channels,
                        out_channels=out_channels, 
                        kernel_size=2*stride,
                        stride=1,
                        bias=False,
                        padding='same')
            )
        else:
            upsample_layer = WNConvTranspose1d(in_channels=in_channels,
                               out_channels=out_channels,
                               kernel_size=2*stride, stride=stride, padding=math.ceil(stride/2))

        self.layers = nn.Sequential(
            get_activation("snake" if use_snake else "elu", antialias=antialias_activation, channels=in_channels),
            upsample_layer,
            ResidualUnit(in_channels=out_channels, out_channels=out_channels,
                         dilation=1, use_snake=use_snake),
            ResidualUnit(in_channels=out_channels, out_channels=out_channels,
                         dilation=3, use_snake=use_snake),
            ResidualUnit(in_channels=out_channels, out_channels=out_channels,
                         dilation=9, use_snake=use_snake),
        )

    def forward(self, x):
        return self.layers(x)

class OobleckEncoder(nn.Module):
    def __init__(self, 
                 in_channels=2, 
                 channels=128, 
                 latent_dim=32, 
                 c_mults = [1, 2, 4, 8], 
                 strides = [2, 4, 8, 8],
                 use_snake=False,
                 antialias_activation=False
        ):
        super().__init__()
          
        c_mults = [1] + c_mults

        self.depth = len(c_mults)

        layers = [
            WNConv1d(in_channels=in_channels, out_channels=c_mults[0] * channels, kernel_size=7, padding=3)
        ]
        
        for i in range(self.depth-1):
            layers += [EncoderBlock(in_channels=c_mults[i]*channels, out_channels=c_mults[i+1]*channels, stride=strides[i], use_snake=use_snake)]

        layers += [
            get_activation("snake" if use_snake else "elu", antialias=antialias_activation, channels=c_mults[-1] * channels),
            WNConv1d(in_channels=c_mults[-1]*channels, out_channels=latent_dim, kernel_size=3, padding=1)
        ]

        self.layers = nn.Sequential(*layers)

    def forward(self, x):
        return self.layers(x)


class OobleckDecoder(nn.Module):
    def __init__(self, 
                 out_channels=2, 
                 channels=128, 
                 latent_dim=32, 
                 c_mults = [1, 2, 4, 8], 
                 strides = [2, 4, 8, 8],
                 use_snake=False,
                 antialias_activation=False,
                 use_nearest_upsample=False,
                 final_tanh=True):
        super().__init__()

        c_mults = [1] + c_mults
        
        self.depth = len(c_mults)

        layers = [
            WNConv1d(in_channels=latent_dim, out_channels=c_mults[-1]*channels, kernel_size=7, padding=3),
        ]
        
        for i in range(self.depth-1, 0, -1):
            layers += [DecoderBlock(
                in_channels=c_mults[i]*channels, 
                out_channels=c_mults[i-1]*channels, 
                stride=strides[i-1], 
                use_snake=use_snake, 
                antialias_activation=antialias_activation,
                use_nearest_upsample=use_nearest_upsample
                )
            ]

        layers += [
            get_activation("snake" if use_snake else "elu", antialias=antialias_activation, channels=c_mults[0] * channels),
            WNConv1d(in_channels=c_mults[0] * channels, out_channels=out_channels, kernel_size=7, padding=3, bias=False),
            nn.Tanh() if final_tanh else nn.Identity()
        ]

        self.layers = nn.Sequential(*layers)

    def forward(self, x):
        return self.layers(x)


class DACEncoderWrapper(nn.Module):
    def __init__(self, in_channels=1, **kwargs):
        super().__init__()

        from dac.model.dac import Encoder as DACEncoder

        latent_dim = kwargs.pop("latent_dim", None)

        encoder_out_dim = kwargs["d_model"] * (2 ** len(kwargs["strides"]))
        self.encoder = DACEncoder(d_latent=encoder_out_dim, **kwargs)
        self.latent_dim = latent_dim

        # Latent-dim support was added to DAC after this was first written, and implemented differently, so this is for backwards compatibility
        self.proj_out = nn.Conv1d(self.encoder.enc_dim, latent_dim, kernel_size=1) if latent_dim is not None else nn.Identity()

        if in_channels != 1:
            self.encoder.block[0] = WNConv1d(in_channels, kwargs.get("d_model", 64), kernel_size=7, padding=3)

    def forward(self, x):
        x = self.encoder(x)
        x = self.proj_out(x)
        return x

class DACDecoderWrapper(nn.Module):
    def __init__(self, latent_dim, out_channels=1, **kwargs):
        super().__init__()

        from dac.model.dac import Decoder as DACDecoder

        self.decoder = DACDecoder(**kwargs, input_channel = latent_dim, d_out=out_channels)

        self.latent_dim = latent_dim

    def forward(self, x):
        return self.decoder(x)

class AudioAutoencoder(nn.Module):
    def __init__(
        self,
        encoder,
        decoder,
        latent_dim,
        downsampling_ratio,
        sample_rate,
        io_channels=2,
        bottleneck: Bottleneck = None,
        pretransform: Pretransform = None,
        in_channels = None,
        out_channels = None,
        soft_clip = False
    ):
        super().__init__()

        self.downsampling_ratio = downsampling_ratio
        self.sample_rate = sample_rate

        self.latent_dim = latent_dim
        self.io_channels = io_channels
        self.in_channels = io_channels
        self.out_channels = io_channels

        self.min_length = self.downsampling_ratio

        if in_channels is not None:
            self.in_channels = in_channels

        if out_channels is not None:
            self.out_channels = out_channels

        self.bottleneck = bottleneck

        self.encoder = encoder

        self.decoder = decoder

        self.pretransform = pretransform

        self.soft_clip = soft_clip
 
        self.is_discrete = self.bottleneck is not None and self.bottleneck.is_discrete

    def encode(self, audio, return_info=False, skip_pretransform=False, iterate_batch=False, **kwargs):

        info = {}

        if self.pretransform is not None and not skip_pretransform:
            if self.pretransform.enable_grad:
                if iterate_batch:
                    audios = []
                    for i in range(audio.shape[0]):
                        audios.append(self.pretransform.encode(audio[i:i+1]))
                    audio = torch.cat(audios, dim=0)
                else:
                    audio = self.pretransform.encode(audio)
            else:
                with torch.no_grad():
                    if iterate_batch:
                        audios = []
                        for i in range(audio.shape[0]):
                            audios.append(self.pretransform.encode(audio[i:i+1]))
                        audio = torch.cat(audios, dim=0)
                    else:
                        audio = self.pretransform.encode(audio)

        if self.encoder is not None:
            if iterate_batch:
                latents = []
                for i in range(audio.shape[0]):
                    latents.append(self.encoder(audio[i:i+1]))
                latents = torch.cat(latents, dim=0)
            else:
                latents = self.encoder(audio)
        else:
            latents = audio

        if self.bottleneck is not None:
            # TODO: Add iterate batch logic, needs to merge the info dicts
            latents, bottleneck_info = self.bottleneck.encode(latents, return_info=True, **kwargs)

            info.update(bottleneck_info)

        if return_info:
            return latents, info

        return latents

    def decode(self, latents, iterate_batch=False, **kwargs):

        if self.bottleneck is not None:
            if iterate_batch:
                decoded = []
                for i in range(latents.shape[0]):
                    decoded.append(self.bottleneck.decode(latents[i:i+1]))
                decoded = torch.cat(decoded, dim=0)
            else:
                latents = self.bottleneck.decode(latents)

        if iterate_batch:
            decoded = []
            for i in range(latents.shape[0]):
                decoded.append(self.decoder(latents[i:i+1]))
            decoded = torch.cat(decoded, dim=0)
        else:
            decoded = self.decoder(latents, **kwargs)

        if self.pretransform is not None:
            if self.pretransform.enable_grad:
                if iterate_batch:
                    decodeds = []
                    for i in range(decoded.shape[0]):
                        decodeds.append(self.pretransform.decode(decoded[i:i+1]))
                    decoded = torch.cat(decodeds, dim=0)
                else:
                    decoded = self.pretransform.decode(decoded)
            else:
                with torch.no_grad():
                    if iterate_batch:
                        decodeds = []
                        for i in range(latents.shape[0]):
                            decodeds.append(self.pretransform.decode(decoded[i:i+1]))
                        decoded = torch.cat(decodeds, dim=0)
                    else:
                        decoded = self.pretransform.decode(decoded)

        if self.soft_clip:
            decoded = torch.tanh(decoded)

        return decoded

    def decode_tokens(self, tokens, **kwargs):
        '''
        Decode discrete tokens to audio
        Only works with discrete autoencoders
        '''

        assert isinstance(self.bottleneck, DiscreteBottleneck), "decode_tokens only works with discrete autoencoders"

        latents = self.bottleneck.decode_tokens(tokens, **kwargs)

        return self.decode(latents, **kwargs)
        
    
    def preprocess_audio_for_encoder(self, audio, in_sr):
        '''
        Preprocess single audio tensor (Channels x Length) to be compatible with the encoder.
        If the model is mono, stereo audio will be converted to mono.
        Audio will be silence-padded to be a multiple of the model's downsampling ratio.
        Audio will be resampled to the model's sample rate. 
        The output will have batch size 1 and be shape (1 x Channels x Length)
        '''
        return self.preprocess_audio_list_for_encoder([audio], [in_sr])

    def preprocess_audio_list_for_encoder(self, audio_list, in_sr_list):
        '''
        Preprocess a [list] of audio (Channels x Length) into a batch tensor to be compatable with the encoder. 
        The audio in that list can be of different lengths and channels. 
        in_sr can be an integer or list. If it's an integer it will be assumed it is the input sample_rate for every audio.
        All audio will be resampled to the model's sample rate. 
        Audio will be silence-padded to the longest length, and further padded to be a multiple of the model's downsampling ratio. 
        If the model is mono, all audio will be converted to mono. 
        The output will be a tensor of shape (Batch x Channels x Length)
        '''
        batch_size = len(audio_list)
        if isinstance(in_sr_list, int):
            in_sr_list = [in_sr_list]*batch_size
        assert len(in_sr_list) == batch_size, "list of sample rates must be the same length of audio_list"
        new_audio = []
        max_length = 0
        # resample & find the max length
        for i in range(batch_size):
            audio = audio_list[i]
            in_sr = in_sr_list[i]
            if len(audio.shape) == 3 and audio.shape[0] == 1:
                # batchsize 1 was given by accident. Just squeeze it.
                audio = audio.squeeze(0)
            elif len(audio.shape) == 1:
                # Mono signal, channel dimension is missing, unsqueeze it in
                audio = audio.unsqueeze(0)
            assert len(audio.shape)==2, "Audio should be shape (Channels x Length) with no batch dimension" 
            # Resample audio
            if in_sr != self.sample_rate:
                resample_tf = T.Resample(in_sr, self.sample_rate).to(audio.device)
                audio = resample_tf(audio)
            new_audio.append(audio)
            if audio.shape[-1] > max_length:
                max_length = audio.shape[-1]
        # Pad every audio to the same length, multiple of model's downsampling ratio
        padded_audio_length = max_length + (self.min_length - (max_length % self.min_length)) % self.min_length
        for i in range(batch_size):
            # Pad it & if necessary, mixdown/duplicate stereo/mono channels to support model
            new_audio[i] = prepare_audio(new_audio[i], in_sr=in_sr, target_sr=in_sr, target_length=padded_audio_length, 
                target_channels=self.in_channels, device=new_audio[i].device).squeeze(0)
        # convert to tensor 
        return torch.stack(new_audio) 

    def encode_audio(self, audio, chunked=False, overlap=32, chunk_size=128, **kwargs):
        '''
        Encode audios into latents. Audios should already be preprocesed by preprocess_audio_for_encoder.
        If chunked is True, split the audio into chunks of a given maximum size chunk_size, with given overlap.
        Overlap and chunk_size params are both measured in number of latents (not audio samples) 
        # and therefore you likely could use the same values with decode_audio. 
        A overlap of zero will cause discontinuity artefacts. Overlap should be => receptive field size. 
        Every autoencoder will have a different receptive field size, and thus ideal overlap.
        You can determine it empirically by diffing unchunked vs chunked output and looking at maximum diff.
        The final chunk may have a longer overlap in order to keep chunk_size consistent for all chunks.
        Smaller chunk_size uses less memory, but more compute.
        The chunk_size vs memory tradeoff isn't linear, and possibly depends on the GPU and CUDA version
        For example, on a A6000 chunk_size 128 is overall faster than 256 and 512 even though it has more chunks
        '''
        if not chunked:
            # default behavior. Encode the entire audio in parallel
            return self.encode(audio, **kwargs)
        else:
            # CHUNKED ENCODING
            # samples_per_latent is just the downsampling ratio (which is also the upsampling ratio)
            samples_per_latent = self.downsampling_ratio
            total_size = audio.shape[2] # in samples
            batch_size = audio.shape[0]
            chunk_size *= samples_per_latent # converting metric in latents to samples
            overlap *= samples_per_latent # converting metric in latents to samples
            hop_size = chunk_size - overlap
            chunks = []
            for i in range(0, total_size - chunk_size + 1, hop_size):
                chunk = audio[:,:,i:i+chunk_size]
                chunks.append(chunk)
            if i+chunk_size != total_size:
                # Final chunk
                chunk = audio[:,:,-chunk_size:]
                chunks.append(chunk)
            chunks = torch.stack(chunks)
            num_chunks = chunks.shape[0]
            # Note: y_size might be a different value from the latent length used in diffusion training
            # because we can encode audio of varying lengths
            # However, the audio should've been padded to a multiple of samples_per_latent by now.
            y_size = total_size // samples_per_latent
            # Create an empty latent, we will populate it with chunks as we encode them
            y_final = torch.zeros((batch_size,self.latent_dim,y_size)).to(audio.device)
            for i in range(num_chunks):
                x_chunk = chunks[i,:]
                # encode the chunk
                y_chunk = self.encode(x_chunk)
                # figure out where to put the audio along the time domain
                if i == num_chunks-1:
                    # final chunk always goes at the end
                    t_end = y_size
                    t_start = t_end - y_chunk.shape[2]
                else:
                    t_start = i * hop_size // samples_per_latent
                    t_end = t_start + chunk_size // samples_per_latent
                #  remove the edges of the overlaps
                ol = overlap//samples_per_latent//2
                chunk_start = 0
                chunk_end = y_chunk.shape[2]
                if i > 0:
                    # no overlap for the start of the first chunk
                    t_start += ol
                    chunk_start += ol
                if i < num_chunks-1:
                    # no overlap for the end of the last chunk
                    t_end -= ol
                    chunk_end -= ol
                # paste the chunked audio into our y_final output audio
                y_final[:,:,t_start:t_end] = y_chunk[:,:,chunk_start:chunk_end]
            return y_final
    
    def decode_audio(self, latents, chunked=False, overlap=32, chunk_size=128, **kwargs):
        '''
        Decode latents to audio. 
        If chunked is True, split the latents into chunks of a given maximum size chunk_size, with given overlap, both of which are measured in number of latents. 
        A overlap of zero will cause discontinuity artefacts. Overlap should be => receptive field size. 
        Every autoencoder will have a different receptive field size, and thus ideal overlap.
        You can determine it empirically by diffing unchunked vs chunked audio and looking at maximum diff.
        The final chunk may have a longer overlap in order to keep chunk_size consistent for all chunks.
        Smaller chunk_size uses less memory, but more compute.
        The chunk_size vs memory tradeoff isn't linear, and possibly depends on the GPU and CUDA version
        For example, on a A6000 chunk_size 128 is overall faster than 256 and 512 even though it has more chunks
        '''
        if not chunked:
            # default behavior. Decode the entire latent in parallel
            return self.decode(latents, **kwargs)
        else:
            # chunked decoding
            hop_size = chunk_size - overlap
            total_size = latents.shape[2]
            batch_size = latents.shape[0]
            chunks = []
            for i in range(0, total_size - chunk_size + 1, hop_size):
                chunk = latents[:,:,i:i+chunk_size]
                chunks.append(chunk)
            if i+chunk_size != total_size:
                # Final chunk
                chunk = latents[:,:,-chunk_size:]
                chunks.append(chunk)
            chunks = torch.stack(chunks)
            num_chunks = chunks.shape[0]
            # samples_per_latent is just the downsampling ratio
            samples_per_latent = self.downsampling_ratio
            # Create an empty waveform, we will populate it with chunks as decode them
            y_size = total_size * samples_per_latent
            y_final = torch.zeros((batch_size,self.out_channels,y_size)).to(latents.device)
            for i in range(num_chunks):
                x_chunk = chunks[i,:]
                # decode the chunk
                y_chunk = self.decode(x_chunk)
                # figure out where to put the audio along the time domain
                if i == num_chunks-1:
                    # final chunk always goes at the end
                    t_end = y_size
                    t_start = t_end - y_chunk.shape[2]
                else:
                    t_start = i * hop_size * samples_per_latent
                    t_end = t_start + chunk_size * samples_per_latent
                #  remove the edges of the overlaps
                ol = (overlap//2) * samples_per_latent
                chunk_start = 0
                chunk_end = y_chunk.shape[2]
                if i > 0:
                    # no overlap for the start of the first chunk
                    t_start += ol
                    chunk_start += ol
                if i < num_chunks-1:
                    # no overlap for the end of the last chunk
                    t_end -= ol
                    chunk_end -= ol
                # paste the chunked audio into our y_final output audio
                y_final[:,:,t_start:t_end] = y_chunk[:,:,chunk_start:chunk_end]
            return y_final

    
# AE factories

def create_encoder_from_config(encoder_config: Dict[str, Any]):
    encoder_type = encoder_config.get("type", None)
    assert encoder_type is not None, "Encoder type must be specified"

    if encoder_type == "oobleck":
        encoder = OobleckEncoder(
            **encoder_config["config"]
        )
    
    elif encoder_type == "seanet":
        from encodec.modules import SEANetEncoder
        seanet_encoder_config = encoder_config["config"]

        #SEANet encoder expects strides in reverse order
        seanet_encoder_config["ratios"] = list(reversed(seanet_encoder_config.get("ratios", [2, 2, 2, 2, 2])))
        encoder = SEANetEncoder(
            **seanet_encoder_config
        )
    elif encoder_type == "dac":
        dac_config = encoder_config["config"]

        encoder = DACEncoderWrapper(**dac_config)
    elif encoder_type == "local_attn":
        from .local_attention import TransformerEncoder1D

        local_attn_config = encoder_config["config"]

        encoder = TransformerEncoder1D(
            **local_attn_config
        )
    else:
        raise ValueError(f"Unknown encoder type {encoder_type}")
    
    requires_grad = encoder_config.get("requires_grad", True)
    if not requires_grad:
        for param in encoder.parameters():
            param.requires_grad = False

    return encoder

def create_decoder_from_config(decoder_config: Dict[str, Any]):
    decoder_type = decoder_config.get("type", None)
    assert decoder_type is not None, "Decoder type must be specified"

    if decoder_type == "oobleck":
        decoder = OobleckDecoder(
            **decoder_config["config"]
        )
    elif decoder_type == "seanet":
        from encodec.modules import SEANetDecoder

        decoder = SEANetDecoder(
            **decoder_config["config"]
        )
    elif decoder_type == "dac":
        dac_config = decoder_config["config"]

        decoder = DACDecoderWrapper(**dac_config)
    elif decoder_type == "local_attn":
        from .local_attention import TransformerDecoder1D

        local_attn_config = decoder_config["config"]

        decoder = TransformerDecoder1D(
            **local_attn_config
        )
    else:
        raise ValueError(f"Unknown decoder type {decoder_type}")
    
    requires_grad = decoder_config.get("requires_grad", True)
    if not requires_grad:
        for param in decoder.parameters():
            param.requires_grad = False

    return decoder

def create_autoencoder_from_config(config: Dict[str, Any]):
    
    ae_config = config["model"]

    encoder = create_encoder_from_config(ae_config["encoder"])
    decoder = create_decoder_from_config(ae_config["decoder"])

    bottleneck = ae_config.get("bottleneck", None)

    latent_dim = ae_config.get("latent_dim", None)
    assert latent_dim is not None, "latent_dim must be specified in model config"
    downsampling_ratio = ae_config.get("downsampling_ratio", None)
    assert downsampling_ratio is not None, "downsampling_ratio must be specified in model config"
    io_channels = ae_config.get("io_channels", None)
    assert io_channels is not None, "io_channels must be specified in model config"
    sample_rate = config.get("sample_rate", None)
    assert sample_rate is not None, "sample_rate must be specified in model config"

    in_channels = ae_config.get("in_channels", None)
    out_channels = ae_config.get("out_channels", None)

    pretransform = ae_config.get("pretransform", None)

    if pretransform is not None:
        pretransform = create_pretransform_from_config(pretransform, sample_rate)

    if bottleneck is not None:
        bottleneck = create_bottleneck_from_config(bottleneck)

    soft_clip = ae_config["decoder"].get("soft_clip", False)

    return AudioAutoencoder(
        encoder,
        decoder,
        io_channels=io_channels,
        latent_dim=latent_dim,
        downsampling_ratio=downsampling_ratio,
        sample_rate=sample_rate,
        bottleneck=bottleneck,
        pretransform=pretransform,
        in_channels=in_channels,
        out_channels=out_channels,
        soft_clip=soft_clip
    )