# -------------------------------------------------------- # InternVL # Copyright (c) 2024 OpenGVLab # Licensed under The MIT License [see LICENSE for details] # -------------------------------------------------------- """ A model worker executes the model. """ import argparse import asyncio import base64 import json import os import threading import time import uuid from functools import partial from io import BytesIO from threading import Thread import requests import torch import torchvision.transforms as T import uvicorn from constants import IMAGENET_MEAN, IMAGENET_STD, WORKER_HEART_BEAT_INTERVAL from fastapi import BackgroundTasks, FastAPI, Request from fastapi.responses import StreamingResponse from PIL import Image from torchvision.transforms.functional import InterpolationMode from transformers import (AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer) from utils import build_logger, pretty_print_semaphore, server_error_msg worker_id = str(uuid.uuid4())[:6] logger = build_logger('model_worker', f'model_worker_{worker_id}.log') global_counter = 0 model_semaphore = None def load_image_from_base64(image): return Image.open(BytesIO(base64.b64decode(image))) def build_transform(input_size): MEAN, STD = IMAGENET_MEAN, IMAGENET_STD transform = T.Compose([ T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC), T.ToTensor(), T.Normalize(mean=MEAN, std=STD) ]) return transform def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size): best_ratio_diff = float('inf') best_ratio = (1, 1) area = width * height for ratio in target_ratios: target_aspect_ratio = ratio[0] / ratio[1] ratio_diff = abs(aspect_ratio - target_aspect_ratio) if ratio_diff < best_ratio_diff: best_ratio_diff = ratio_diff best_ratio = ratio elif ratio_diff == best_ratio_diff: if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: best_ratio = ratio return best_ratio def dynamic_preprocess(image, min_num=1, max_num=6, image_size=448, use_thumbnail=False): orig_width, orig_height = image.size aspect_ratio = orig_width / orig_height # calculate the existing image aspect ratio target_ratios = set( (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if i * j <= max_num and i * j >= min_num) target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) # find the closest aspect ratio to the target target_aspect_ratio = find_closest_aspect_ratio( aspect_ratio, target_ratios, orig_width, orig_height, image_size) # calculate the target width and height target_width = image_size * target_aspect_ratio[0] target_height = image_size * target_aspect_ratio[1] blocks = target_aspect_ratio[0] * target_aspect_ratio[1] # resize the image resized_img = image.resize((target_width, target_height)) processed_images = [] for i in range(blocks): box = ( (i % (target_width // image_size)) * image_size, (i // (target_width // image_size)) * image_size, ((i % (target_width // image_size)) + 1) * image_size, ((i // (target_width // image_size)) + 1) * image_size ) # split the image split_img = resized_img.crop(box) processed_images.append(split_img) assert len(processed_images) == blocks if use_thumbnail and len(processed_images) != 1: thumbnail_img = image.resize((image_size, image_size)) processed_images.append(thumbnail_img) return processed_images def heart_beat_worker(controller): while True: time.sleep(WORKER_HEART_BEAT_INTERVAL) controller.send_heart_beat() class ModelWorker: def __init__(self, controller_addr, worker_addr, worker_id, model_path, model_name, load_8bit, device, context_len=8192): self.controller_addr = controller_addr self.worker_addr = worker_addr self.worker_id = worker_id if model_path.endswith('/'): model_path = model_path[:-1] if model_name is None: model_paths = model_path.split('/') if model_paths[-1].startswith('checkpoint-'): self.model_name = model_paths[-2] + '_' + model_paths[-1] else: self.model_name = model_paths[-1] else: self.model_name = model_name logger.info(f'Loading the model {self.model_name} on worker {worker_id} ...') self.tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True, use_fast=False) if device == 'auto': os.environ['CUDA_LAUNCH_BLOCKING'] = '1' # This can make distributed deployment work properly self.model = AutoModelForCausalLM.from_pretrained( model_path, load_in_8bit=load_8bit, torch_dtype=torch.float16, device_map='auto', trust_remote_code=True).eval() else: self.model = AutoModelForCausalLM.from_pretrained( model_path, load_in_8bit=load_8bit, torch_dtype=torch.float16, trust_remote_code=True).eval() if not load_8bit and not device == 'auto': self.model = self.model.cuda() self.image_size = self.model.config.force_image_size self.context_len = context_len self.register_to_controller() self.heart_beat_thread = threading.Thread( target=heart_beat_worker, args=(self,)) self.heart_beat_thread.start() def register_to_controller(self): logger.info('Register to controller') url = self.controller_addr + '/register_worker' data = { 'worker_name': self.worker_addr, 'check_heart_beat': True, 'worker_status': self.get_status() } r = requests.post(url, json=data) assert r.status_code == 200 def send_heart_beat(self): logger.info(f'Send heart beat. Models: {[self.model_name]}. ' f'Semaphore: {pretty_print_semaphore(model_semaphore)}. ' f'global_counter: {global_counter}') url = self.controller_addr + '/receive_heart_beat' while True: try: ret = requests.post(url, json={ 'worker_name': self.worker_addr, 'queue_length': self.get_queue_length()}, timeout=5) exist = ret.json()['exist'] break except requests.exceptions.RequestException as e: logger.error(f'heart beat error: {e}') time.sleep(5) if not exist: self.register_to_controller() def get_queue_length(self): if model_semaphore is None: return 0 else: return args.limit_model_concurrency - model_semaphore._value + (len( model_semaphore._waiters) if model_semaphore._waiters is not None else 0) def get_status(self): return { 'model_names': [self.model_name], 'speed': 1, 'queue_length': self.get_queue_length(), } @torch.inference_mode() def generate_stream(self, params): system_message = params['prompt'][0]['content'] send_messages = params['prompt'][1:] max_input_tiles = params['max_input_tiles'] temperature = params['temperature'] top_p = params['top_p'] max_new_tokens = params['max_new_tokens'] repetition_penalty = params['repetition_penalty'] do_sample = True if temperature > 0.0 else False global_image_cnt = 1 history, pil_images, max_input_tile_list = [], [], [] for message in send_messages: if message['role'] == 'user': prefix = '' if 'image' in message: max_input_tile_temp = [] for image_str in message['image']: pil_images.append(load_image_from_base64(image_str)) prefix += f'Image-{global_image_cnt}: \n\n' global_image_cnt += 1 max_input_tile_temp.append(max(1, max_input_tiles // len(message['image']))) if len(max_input_tile_temp) > 0: max_input_tile_list.append(max_input_tile_temp) content = prefix + message['content'] history.append([content, ]) else: history[-1].append(message['content']) question, history = history[-1][0], history[:-1] # Create a new list to store processed sublists flattened_list = [] # Iterate through all but the last sublist in max_input_tile_list and process them for sublist in max_input_tile_list[:-1]: processed_sublist = [1] * len(sublist) # Change each element in the sublist to 1 flattened_list.extend(processed_sublist) # Flatten the processed sublist and add to the new list # If max_input_tile_list is not empty, add the last sublist to the new list if max_input_tile_list: flattened_list.extend(max_input_tile_list[-1]) max_input_tile_list = flattened_list assert len(max_input_tile_list) == len(pil_images), 'The number of max_input_tile_list and pil_images should be the same.' logger.info(f'max_input_tile_list: {max_input_tile_list}') old_system_message = self.model.system_message self.model.system_message = system_message image_tiles = [] transform = build_transform(input_size=self.image_size) if len(pil_images) > 0: for current_max_input_tiles, pil_image in zip(max_input_tile_list, pil_images): if self.model.config.dynamic_image_size: tiles = dynamic_preprocess( pil_image, image_size=self.image_size, max_num=current_max_input_tiles, use_thumbnail=self.model.config.use_thumbnail) else: tiles = [pil_image] image_tiles += tiles pixel_values = [transform(item) for item in image_tiles] pixel_values = torch.stack(pixel_values).to(self.model.device, dtype=torch.float16) logger.info(f'Split images to {pixel_values.shape}') else: pixel_values = None streamer = TextIteratorStreamer(self.tokenizer, skip_prompt=True, skip_special_tokens=False, timeout=10) generation_config = dict( num_beams=1, max_new_tokens=max_new_tokens, do_sample=do_sample, temperature=temperature, repetition_penalty=repetition_penalty, max_length=self.context_len, top_p=top_p, streamer=streamer, ) logger.info(history) logger.info(f'Generation config: {generation_config}') try: thread = Thread(target=self.model.chat, kwargs=dict( tokenizer=self.tokenizer, pixel_values=pixel_values, question=question, history=history, return_history=False, generation_config=generation_config, )) thread.start() generated_text = '' for new_text in streamer: generated_text += new_text yield json.dumps({'text': generated_text.replace(self.model.conv_template.sep, ''), 'error_code': 0}).encode() + b'\0' self.model.system_message = old_system_message except: torch.cuda.empty_cache() def generate_stream_gate(self, params): try: for x in self.generate_stream(params): yield x except ValueError as e: print('Caught ValueError:', e) ret = { 'text': server_error_msg, 'error_code': 1, } yield json.dumps(ret).encode() + b'\0' except torch.cuda.CudaError as e: print('Caught torch.cuda.CudaError:', e) ret = { 'text': server_error_msg, 'error_code': 1, } yield json.dumps(ret).encode() + b'\0' except Exception as e: print('Caught Unknown Error', e) ret = { 'text': server_error_msg, 'error_code': 1, } yield json.dumps(ret).encode() + b'\0' app = FastAPI() def release_model_semaphore(fn=None): model_semaphore.release() if fn is not None: fn() @app.post('/worker_generate_stream') async def generate_stream(request: Request): global model_semaphore, global_counter global_counter += 1 params = await request.json() if model_semaphore is None: model_semaphore = asyncio.Semaphore(args.limit_model_concurrency) await model_semaphore.acquire() worker.send_heart_beat() generator = worker.generate_stream_gate(params) background_tasks = BackgroundTasks() background_tasks.add_task(partial(release_model_semaphore, fn=worker.send_heart_beat)) return StreamingResponse(generator, background=background_tasks) @app.post('/worker_get_status') async def get_status(request: Request): return worker.get_status() if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--host', type=str, default='0.0.0.0') parser.add_argument('--port', type=int, default=21002) parser.add_argument('--worker-address', type=str, default='http://localhost:21002') parser.add_argument('--controller-address', type=str, default='http://localhost:21001') parser.add_argument('--model-path', type=str, default='facebook/opt-350m') parser.add_argument('--model-name', type=str) parser.add_argument('--device', type=str, default='cuda') parser.add_argument('--limit-model-concurrency', type=int, default=5) parser.add_argument('--stream-interval', type=int, default=1) parser.add_argument('--load-8bit', action='store_true') args = parser.parse_args() logger.info(f'args: {args}') worker = ModelWorker(args.controller_address, args.worker_address, worker_id, args.model_path, args.model_name, args.load_8bit, args.device) uvicorn.run(app, host=args.host, port=args.port, log_level='info')