Spaces:
Runtime error
Runtime error
# -------------------------------------------------------- | |
# InternVL | |
# Copyright (c) 2024 OpenGVLab | |
# Licensed under The MIT License [see LICENSE for details] | |
# -------------------------------------------------------- | |
""" | |
A model worker executes the model. | |
""" | |
import argparse | |
import asyncio | |
import base64 | |
import json | |
import os | |
import threading | |
import time | |
import uuid | |
from functools import partial | |
from io import BytesIO | |
from threading import Thread | |
import requests | |
import torch | |
import torchvision.transforms as T | |
import uvicorn | |
from constants import IMAGENET_MEAN, IMAGENET_STD, WORKER_HEART_BEAT_INTERVAL | |
from fastapi import BackgroundTasks, FastAPI, Request | |
from fastapi.responses import StreamingResponse | |
from PIL import Image | |
from torchvision.transforms.functional import InterpolationMode | |
from transformers import (AutoModelForCausalLM, AutoTokenizer, | |
TextIteratorStreamer) | |
from utils import build_logger, pretty_print_semaphore, server_error_msg | |
worker_id = str(uuid.uuid4())[:6] | |
logger = build_logger('model_worker', f'model_worker_{worker_id}.log') | |
global_counter = 0 | |
model_semaphore = None | |
def load_image_from_base64(image): | |
return Image.open(BytesIO(base64.b64decode(image))) | |
def build_transform(input_size): | |
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD | |
transform = T.Compose([ | |
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), | |
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC), | |
T.ToTensor(), | |
T.Normalize(mean=MEAN, std=STD) | |
]) | |
return transform | |
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size): | |
best_ratio_diff = float('inf') | |
best_ratio = (1, 1) | |
area = width * height | |
for ratio in target_ratios: | |
target_aspect_ratio = ratio[0] / ratio[1] | |
ratio_diff = abs(aspect_ratio - target_aspect_ratio) | |
if ratio_diff < best_ratio_diff: | |
best_ratio_diff = ratio_diff | |
best_ratio = ratio | |
elif ratio_diff == best_ratio_diff: | |
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: | |
best_ratio = ratio | |
return best_ratio | |
def dynamic_preprocess(image, min_num=1, max_num=6, image_size=448, use_thumbnail=False): | |
orig_width, orig_height = image.size | |
aspect_ratio = orig_width / orig_height | |
# calculate the existing image aspect ratio | |
target_ratios = set( | |
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if | |
i * j <= max_num and i * j >= min_num) | |
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) | |
# find the closest aspect ratio to the target | |
target_aspect_ratio = find_closest_aspect_ratio( | |
aspect_ratio, target_ratios, orig_width, orig_height, image_size) | |
# calculate the target width and height | |
target_width = image_size * target_aspect_ratio[0] | |
target_height = image_size * target_aspect_ratio[1] | |
blocks = target_aspect_ratio[0] * target_aspect_ratio[1] | |
# resize the image | |
resized_img = image.resize((target_width, target_height)) | |
processed_images = [] | |
for i in range(blocks): | |
box = ( | |
(i % (target_width // image_size)) * image_size, | |
(i // (target_width // image_size)) * image_size, | |
((i % (target_width // image_size)) + 1) * image_size, | |
((i // (target_width // image_size)) + 1) * image_size | |
) | |
# split the image | |
split_img = resized_img.crop(box) | |
processed_images.append(split_img) | |
assert len(processed_images) == blocks | |
if use_thumbnail and len(processed_images) != 1: | |
thumbnail_img = image.resize((image_size, image_size)) | |
processed_images.append(thumbnail_img) | |
return processed_images | |
def heart_beat_worker(controller): | |
while True: | |
time.sleep(WORKER_HEART_BEAT_INTERVAL) | |
controller.send_heart_beat() | |
class ModelWorker: | |
def __init__(self, controller_addr, worker_addr, worker_id, model_path, model_name, | |
load_8bit, device, context_len=8192): | |
self.controller_addr = controller_addr | |
self.worker_addr = worker_addr | |
self.worker_id = worker_id | |
if model_path.endswith('/'): | |
model_path = model_path[:-1] | |
if model_name is None: | |
model_paths = model_path.split('/') | |
if model_paths[-1].startswith('checkpoint-'): | |
self.model_name = model_paths[-2] + '_' + model_paths[-1] | |
else: | |
self.model_name = model_paths[-1] | |
else: | |
self.model_name = model_name | |
logger.info(f'Loading the model {self.model_name} on worker {worker_id} ...') | |
self.tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True, use_fast=False) | |
if device == 'auto': | |
os.environ['CUDA_LAUNCH_BLOCKING'] = '1' | |
# This can make distributed deployment work properly | |
self.model = AutoModelForCausalLM.from_pretrained( | |
model_path, | |
load_in_8bit=load_8bit, | |
torch_dtype=torch.float16, | |
device_map='auto', | |
trust_remote_code=True).eval() | |
else: | |
self.model = AutoModelForCausalLM.from_pretrained( | |
model_path, | |
load_in_8bit=load_8bit, | |
torch_dtype=torch.float16, | |
trust_remote_code=True).eval() | |
if not load_8bit and not device == 'auto': | |
self.model = self.model.cuda() | |
self.image_size = self.model.config.force_image_size | |
self.context_len = context_len | |
self.register_to_controller() | |
self.heart_beat_thread = threading.Thread( | |
target=heart_beat_worker, args=(self,)) | |
self.heart_beat_thread.start() | |
def register_to_controller(self): | |
logger.info('Register to controller') | |
url = self.controller_addr + '/register_worker' | |
data = { | |
'worker_name': self.worker_addr, | |
'check_heart_beat': True, | |
'worker_status': self.get_status() | |
} | |
r = requests.post(url, json=data) | |
assert r.status_code == 200 | |
def send_heart_beat(self): | |
logger.info(f'Send heart beat. Models: {[self.model_name]}. ' | |
f'Semaphore: {pretty_print_semaphore(model_semaphore)}. ' | |
f'global_counter: {global_counter}') | |
url = self.controller_addr + '/receive_heart_beat' | |
while True: | |
try: | |
ret = requests.post(url, json={ | |
'worker_name': self.worker_addr, | |
'queue_length': self.get_queue_length()}, timeout=5) | |
exist = ret.json()['exist'] | |
break | |
except requests.exceptions.RequestException as e: | |
logger.error(f'heart beat error: {e}') | |
time.sleep(5) | |
if not exist: | |
self.register_to_controller() | |
def get_queue_length(self): | |
if model_semaphore is None: | |
return 0 | |
else: | |
return args.limit_model_concurrency - model_semaphore._value + (len( | |
model_semaphore._waiters) if model_semaphore._waiters is not None else 0) | |
def get_status(self): | |
return { | |
'model_names': [self.model_name], | |
'speed': 1, | |
'queue_length': self.get_queue_length(), | |
} | |
def generate_stream(self, params): | |
system_message = params['prompt'][0]['content'] | |
send_messages = params['prompt'][1:] | |
max_input_tiles = params['max_input_tiles'] | |
temperature = params['temperature'] | |
top_p = params['top_p'] | |
max_new_tokens = params['max_new_tokens'] | |
repetition_penalty = params['repetition_penalty'] | |
do_sample = True if temperature > 0.0 else False | |
global_image_cnt = 1 | |
history, pil_images, max_input_tile_list = [], [], [] | |
for message in send_messages: | |
if message['role'] == 'user': | |
prefix = '' | |
if 'image' in message: | |
max_input_tile_temp = [] | |
for image_str in message['image']: | |
pil_images.append(load_image_from_base64(image_str)) | |
prefix += f'Image-{global_image_cnt}: <image>\n\n' | |
global_image_cnt += 1 | |
max_input_tile_temp.append(max(1, max_input_tiles // len(message['image']))) | |
if len(max_input_tile_temp) > 0: | |
max_input_tile_list.append(max_input_tile_temp) | |
content = prefix + message['content'] | |
history.append([content, ]) | |
else: | |
history[-1].append(message['content']) | |
question, history = history[-1][0], history[:-1] | |
# Create a new list to store processed sublists | |
flattened_list = [] | |
# Iterate through all but the last sublist in max_input_tile_list and process them | |
for sublist in max_input_tile_list[:-1]: | |
processed_sublist = [1] * len(sublist) # Change each element in the sublist to 1 | |
flattened_list.extend(processed_sublist) # Flatten the processed sublist and add to the new list | |
# If max_input_tile_list is not empty, add the last sublist to the new list | |
if max_input_tile_list: | |
flattened_list.extend(max_input_tile_list[-1]) | |
max_input_tile_list = flattened_list | |
assert len(max_input_tile_list) == len(pil_images), 'The number of max_input_tile_list and pil_images should be the same.' | |
logger.info(f'max_input_tile_list: {max_input_tile_list}') | |
old_system_message = self.model.system_message | |
self.model.system_message = system_message | |
image_tiles = [] | |
transform = build_transform(input_size=self.image_size) | |
if len(pil_images) > 0: | |
for current_max_input_tiles, pil_image in zip(max_input_tile_list, pil_images): | |
if self.model.config.dynamic_image_size: | |
tiles = dynamic_preprocess( | |
pil_image, image_size=self.image_size, max_num=current_max_input_tiles, | |
use_thumbnail=self.model.config.use_thumbnail) | |
else: | |
tiles = [pil_image] | |
image_tiles += tiles | |
pixel_values = [transform(item) for item in image_tiles] | |
pixel_values = torch.stack(pixel_values).to(self.model.device, dtype=torch.float16) | |
logger.info(f'Split images to {pixel_values.shape}') | |
else: | |
pixel_values = None | |
streamer = TextIteratorStreamer(self.tokenizer, skip_prompt=True, skip_special_tokens=False, timeout=10) | |
generation_config = dict( | |
num_beams=1, | |
max_new_tokens=max_new_tokens, | |
do_sample=do_sample, | |
temperature=temperature, | |
repetition_penalty=repetition_penalty, | |
max_length=self.context_len, | |
top_p=top_p, | |
streamer=streamer, | |
) | |
logger.info(history) | |
logger.info(f'Generation config: {generation_config}') | |
try: | |
thread = Thread(target=self.model.chat, kwargs=dict( | |
tokenizer=self.tokenizer, | |
pixel_values=pixel_values, | |
question=question, | |
history=history, | |
return_history=False, | |
generation_config=generation_config, | |
)) | |
thread.start() | |
generated_text = '' | |
for new_text in streamer: | |
generated_text += new_text | |
yield json.dumps({'text': generated_text.replace(self.model.conv_template.sep, ''), | |
'error_code': 0}).encode() + b'\0' | |
self.model.system_message = old_system_message | |
except: | |
torch.cuda.empty_cache() | |
def generate_stream_gate(self, params): | |
try: | |
for x in self.generate_stream(params): | |
yield x | |
except ValueError as e: | |
print('Caught ValueError:', e) | |
ret = { | |
'text': server_error_msg, | |
'error_code': 1, | |
} | |
yield json.dumps(ret).encode() + b'\0' | |
except torch.cuda.CudaError as e: | |
print('Caught torch.cuda.CudaError:', e) | |
ret = { | |
'text': server_error_msg, | |
'error_code': 1, | |
} | |
yield json.dumps(ret).encode() + b'\0' | |
except Exception as e: | |
print('Caught Unknown Error', e) | |
ret = { | |
'text': server_error_msg, | |
'error_code': 1, | |
} | |
yield json.dumps(ret).encode() + b'\0' | |
app = FastAPI() | |
def release_model_semaphore(fn=None): | |
model_semaphore.release() | |
if fn is not None: | |
fn() | |
async def generate_stream(request: Request): | |
global model_semaphore, global_counter | |
global_counter += 1 | |
params = await request.json() | |
if model_semaphore is None: | |
model_semaphore = asyncio.Semaphore(args.limit_model_concurrency) | |
await model_semaphore.acquire() | |
worker.send_heart_beat() | |
generator = worker.generate_stream_gate(params) | |
background_tasks = BackgroundTasks() | |
background_tasks.add_task(partial(release_model_semaphore, fn=worker.send_heart_beat)) | |
return StreamingResponse(generator, background=background_tasks) | |
async def get_status(request: Request): | |
return worker.get_status() | |
if __name__ == '__main__': | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--host', type=str, default='0.0.0.0') | |
parser.add_argument('--port', type=int, default=21002) | |
parser.add_argument('--worker-address', type=str, default='http://localhost:21002') | |
parser.add_argument('--controller-address', type=str, default='http://localhost:21001') | |
parser.add_argument('--model-path', type=str, default='facebook/opt-350m') | |
parser.add_argument('--model-name', type=str) | |
parser.add_argument('--device', type=str, default='cuda') | |
parser.add_argument('--limit-model-concurrency', type=int, default=5) | |
parser.add_argument('--stream-interval', type=int, default=1) | |
parser.add_argument('--load-8bit', action='store_true') | |
args = parser.parse_args() | |
logger.info(f'args: {args}') | |
worker = ModelWorker(args.controller_address, | |
args.worker_address, | |
worker_id, | |
args.model_path, | |
args.model_name, | |
args.load_8bit, | |
args.device) | |
uvicorn.run(app, host=args.host, port=args.port, log_level='info') | |