Oliver Li
added app and requirement files
4b4d3c0
raw
history blame
1.43 kB
import streamlit as st
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
# Function to load the pre-trained model
def load_model(model_name):
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
sentiment_pipeline = pipeline("sentiment-analysis", tokenizer=tokenizer, model=model)
return sentiment_pipeline
# Streamlit app
st.title("Basic Sentiment Analysis App")
st.write("Enter a text and select a pre-trained model to get the sentiment analysis.")
# Input text
text = st.text_input("Enter your text:")
# Model selection
model_options = [
"distilbert-base-uncased-finetuned-sst-2-english",
"textattack/bert-base-uncased-SST-2",
"cardiffnlp/twitter-roberta-base-sentiment",
"nlptown/bert-base-multilingual-uncased-sentiment"
]
selected_model = st.selectbox("Choose a pre-trained model:", model_options)
# Load the model and perform sentiment analysis
if st.button("Analyze"):
if not text:
st.write("Please enter a text.")
else:
with st.spinner("Analyzing sentiment..."):
sentiment_pipeline = load_model(selected_model)
result = sentiment_pipeline(text)
st.write(f"Sentiment: {result[0]['label']} (confidence: {result[0]['score']:.2f})")
else:
st.write("Enter a text and click 'Analyze' to perform sentiment analysis.")