File size: 4,283 Bytes
4f6613a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import random
import warnings
from importlib.util import find_spec
from typing import Callable

import numpy as np
import torch
from omegaconf import DictConfig

from .logger import RankedLogger
from .rich_utils import enforce_tags, print_config_tree

log = RankedLogger(__name__, rank_zero_only=True)


def extras(cfg: DictConfig) -> None:
    """Applies optional utilities before the task is started.

    Utilities:
    - Ignoring python warnings
    - Setting tags from command line
    - Rich config printing
    """

    # return if no `extras` config
    if not cfg.get("extras"):
        log.warning("Extras config not found! <cfg.extras=null>")
        return

    # disable python warnings
    if cfg.extras.get("ignore_warnings"):
        log.info("Disabling python warnings! <cfg.extras.ignore_warnings=True>")
        warnings.filterwarnings("ignore")

    # prompt user to input tags from command line if none are provided in the config
    if cfg.extras.get("enforce_tags"):
        log.info("Enforcing tags! <cfg.extras.enforce_tags=True>")
        enforce_tags(cfg, save_to_file=True)

    # pretty print config tree using Rich library
    if cfg.extras.get("print_config"):
        log.info("Printing config tree with Rich! <cfg.extras.print_config=True>")
        print_config_tree(cfg, resolve=True, save_to_file=True)


def task_wrapper(task_func: Callable) -> Callable:
    """Optional decorator that controls the failure behavior when executing the task function.

    This wrapper can be used to:
    - make sure loggers are closed even if the task function raises an exception (prevents multirun failure)
    - save the exception to a `.log` file
    - mark the run as failed with a dedicated file in the `logs/` folder (so we can find and rerun it later)
    - etc. (adjust depending on your needs)

    Example:
    ```
    @utils.task_wrapper
    def train(cfg: DictConfig) -> Tuple[dict, dict]:

        ...

        return metric_dict, object_dict
    ```
    """  # noqa: E501

    def wrap(cfg: DictConfig):
        # execute the task
        try:
            metric_dict, object_dict = task_func(cfg=cfg)

        # things to do if exception occurs
        except Exception as ex:
            # save exception to `.log` file
            log.exception("")

            # some hyperparameter combinations might be invalid or
            # cause out-of-memory errors so when using hparam search
            # plugins like Optuna, you might want to disable
            # raising the below exception to avoid multirun failure
            raise ex

        # things to always do after either success or exception
        finally:
            # display output dir path in terminal
            log.info(f"Output dir: {cfg.paths.run_dir}")

            # always close wandb run (even if exception occurs so multirun won't fail)
            if find_spec("wandb"):  # check if wandb is installed
                import wandb

                if wandb.run:
                    log.info("Closing wandb!")
                    wandb.finish()

        return metric_dict, object_dict

    return wrap


def get_metric_value(metric_dict: dict, metric_name: str) -> float:
    """Safely retrieves value of the metric logged in LightningModule."""

    if not metric_name:
        log.info("Metric name is None! Skipping metric value retrieval...")
        return None

    if metric_name not in metric_dict:
        raise Exception(
            f"Metric value not found! <metric_name={metric_name}>\n"
            "Make sure metric name logged in LightningModule is correct!\n"
            "Make sure `optimized_metric` name in `hparams_search` config is correct!"
        )

    metric_value = metric_dict[metric_name].item()
    log.info(f"Retrieved metric value! <{metric_name}={metric_value}>")

    return metric_value


def set_seed(seed: int):
    if seed < 0:
        seed = -seed
    if seed > (1 << 31):
        seed = 1 << 31

    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)

    if torch.cuda.is_available():
        torch.cuda.manual_seed(seed)
        torch.cuda.manual_seed_all(seed)

    if torch.backends.cudnn.is_available():
        torch.backends.cudnn.deterministic = True
        torch.backends.cudnn.benchmark = False