Spaces:
Sleeping
Sleeping
File size: 12,814 Bytes
3698d0a 6aa1c8b 3698d0a 5f0df3a 3698d0a 5f0df3a 3698d0a 5f0df3a 3698d0a 5f0df3a 989cd20 5f0df3a 3698d0a 6aa1c8b 5f0df3a 3698d0a 6aa1c8b 3698d0a 5f0df3a 6aa1c8b 5f0df3a 6aa1c8b 3698d0a 5f0df3a 3698d0a 5f0df3a 3698d0a 5f0df3a 989cd20 5f0df3a 3698d0a 5f0df3a 3698d0a 5f0df3a 3698d0a 5f0df3a 3698d0a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
# Ref: Ouyang, A. (2023). Understanding the Performance of Transformer Inference (Doctoral dissertation, Massachusetts Institute of Technology).
import streamlit as st
import pandas as pd
from model_util import fetch_dictionary_content, load_parameter
from calc_util import *
from render_util import create_table, header4, header5
st.set_page_config(layout='wide')
if 'model_config' not in st.session_state:
st.session_state['model_config'] = {}
def load_model_config(model_id):
if 'model_id' in st.session_state['model_config'] and st.session_state['model_config']['model_id'] == model_id:
return st.session_state['model_config']
model_config = {}
dictionary_content = fetch_dictionary_content(model_id)
if dictionary_content:
model_config['model_id'] = model_id
model_config['hidden_size'] = dictionary_content['hidden_size']
model_config['num_attention_heads'] = dictionary_content['num_attention_heads']
model_config['num_hidden_layers'] = dictionary_content['num_hidden_layers']
model_config['intermediate_size'] = load_parameter(dictionary_content, ['intermediate_size', 'ffn_dim'])
model_config['vocab_size'] = dictionary_content['vocab_size']
model_config['max_position_embeddings'] = dictionary_content['max_position_embeddings']
model_config['layernorm_operation'] = 2
else:
st.warning("Model Info is not public!")
model_config['model_id'] = 'opt-1.3b'
model_config['hidden_size'] = 2048
model_config['num_attention_heads'] = 32
model_config['num_hidden_layers'] = 24
model_config['intermediate_size'] = 8192
model_config['vocab_size'] = 50272
model_config['max_position_embeddings'] = 2048
model_config['layernorm_operation'] = 2
st.session_state['model_config'] = model_config
return model_config
subtotal_parameters = [
'embedding_weights',
'attention_weights',
'mlp_weights',
'model_total_size'
]
subtotal_operations = [
'embeddings',
'attention',
'mlp',
'total',
]
col1, col2, col3, col4, col5 = st.columns([1,1.5,2.3,2.3,0.1])
inference_config = {}
parameter_count = {}
cached_parameter_count = {}
prefilling_operation_count = {}
generation_operation_count = {}
prefilling_memory_count = {}
generation_memory_count = {}
gpu_config = {}
inference_info = {}
with col1:
header4("Model")
model_id = st.text_input("huggingface model id", 'ArthurZ/opt-13b')
model_config = load_model_config(model_id)
model_config['hidden_size'] = st.number_input('hidden size', value=model_config['hidden_size'], format ="%d")
model_config['num_attention_heads'] = st.number_input('num attention heads', value=model_config['num_attention_heads'], format ="%d")
model_config['num_hidden_layers'] = st.number_input('num hidden layers', value=model_config['num_hidden_layers'], format ="%d")
model_config['intermediate_size'] = st.number_input('intermediate size', value=model_config['intermediate_size'], format ="%d")
model_config['vocab_size'] = st.number_input('vocab size', value= model_config['vocab_size'], format ="%d")
model_config['max_position_embeddings'] = st.number_input('max position embeddings', value=model_config['max_position_embeddings'], format ="%d")
model_config['hidden_size_per_head'] = model_config['hidden_size']/model_config['num_attention_heads']
header4("Inference Setting")
inference_config['batchsize'] = st.number_input('batchsize', value=1, format ="%d")
inference_config['input_seq_length'] = st.number_input('input seq length', value=1, format ="%d")
inference_config['output_seq_length'] = st.number_input('output seq length', value=1, format ="%d")
inference_config['byte_per_parameter'] = st.number_input('byte per parameter', value=2, format ="%d")
inference_config['KV_cache'] = st.checkbox("Use KV cache", value=True)
header4("GPU Setting")
gpu_config['Name'] = st.text_input('GPU Type', value="A6000")
gpu_config['TFLOP'] = st.number_input('TFLOP', value=38.7, format ="%2f")
gpu_config['memory_bandwidth'] = st.number_input('memory bandwidth (GB/s)', value=768, format ="%2d")
gpu_config['arithmetic_intensity'] = gpu_config['TFLOP']*10**12/gpu_config['memory_bandwidth']/1024**3
st.write(f"arithmetic_intensity: {gpu_config['arithmetic_intensity']:.3f}")
with col2:
parameter_count['word_embedding'] = model_config['vocab_size']*model_config['hidden_size']
parameter_count['positional_embedding'] = model_config['max_position_embeddings']*model_config['hidden_size']
parameter_count['attention_Q'] = model_config['num_hidden_layers']*model_config['hidden_size']*model_config['hidden_size']/model_config['num_attention_heads']*model_config['num_attention_heads']
parameter_count['attention_K'] = model_config['num_hidden_layers']*model_config['hidden_size']*model_config['hidden_size']/model_config['num_attention_heads']*model_config['num_attention_heads']
parameter_count['attention_V'] = model_config['num_hidden_layers']*model_config['hidden_size']*model_config['hidden_size']/model_config['num_attention_heads']*model_config['num_attention_heads']
parameter_count['attention_out'] = model_config['num_hidden_layers']*model_config['hidden_size']*model_config['hidden_size']/model_config['num_attention_heads']*model_config['num_attention_heads']
parameter_count['layernorm'] = 2*model_config['layernorm_operation']*model_config['num_hidden_layers']*model_config['hidden_size']
parameter_count['mlp1'] = model_config['num_hidden_layers']*model_config['hidden_size']*model_config['intermediate_size']
parameter_count['mlp2'] = model_config['num_hidden_layers']*model_config['hidden_size']*model_config['intermediate_size']
parameter_count['embedding_weights'] = parameter_count['word_embedding'] + parameter_count['positional_embedding']
parameter_count['attention_weights'] = parameter_count['attention_out'] + parameter_count['attention_Q'] + parameter_count['attention_K'] + parameter_count['attention_V']
parameter_count['mlp_weights'] = parameter_count['mlp1'] + parameter_count['mlp2']
parameter_count['model_total_size'] = inference_config['byte_per_parameter'] * (
parameter_count['embedding_weights'] +
parameter_count['attention_weights'] +
parameter_count['mlp_weights'] +
parameter_count['layernorm'])
parameters_items = {key: "{:,}".format(int(parameter_count[key])) for key in parameter_count if key not in subtotal_parameters}
subtotal_parameters_items = {key: "{:,}".format(int(parameter_count[key])) for key in parameter_count if key in subtotal_parameters}
# Convert dictionaries to pandas dataframes for table display
df_parameters_items = pd.DataFrame(list(parameters_items.items()), columns=["Parameter", "Count"])
df_subtotal_parameters_items = pd.DataFrame(list(subtotal_parameters_items.items()), columns=["Parameter", "Count"])
header4("Model Parameters")
st.markdown(create_table(df_parameters_items))
header4("Parameters Summary")
st.markdown(create_table(df_subtotal_parameters_items))
with col3: # Prefilling
prefilling_operation_count = prefilling_operation(model_config, inference_config)
prefilling_activation_memory_count = prefilling_activation_memory(model_config, inference_config)
inference_info['inference_prefilling_time'] = prefilling_operation_count['total'] / (gpu_config['TFLOP']*1024**4)
inference_info['inference_prefilling_throughput'] = inference_config['input_seq_length']*inference_config['batchsize']/inference_info['inference_prefilling_time']
inference_info['prefilling_memory_latency'] = prefilling_activation_memory_count['total'] / (gpu_config['memory_bandwidth']*1024**3)
cached_parameter_count['kv_cache'] = 2 * (inference_config['batchsize'] * (model_config['hidden_size'] * model_config['num_hidden_layers'] * inference_config['input_seq_length']))
operation_items = {key: "{:,}".format(int(prefilling_operation_count[key])) for key in prefilling_operation_count if key not in subtotal_operations}
subtotal_operation_items = {key: "{:,}".format(int(prefilling_operation_count[key])) for key in prefilling_operation_count if key in subtotal_operations}
prefilling_arithmetic_intensity = {key: "{:.3f}".format(prefilling_operation_count[key]/prefilling_activation_memory_count[key]) for key in prefilling_activation_memory_count}
prefilling_activation_memory_count = {key: "{:,}".format(int(value)) for key, value in prefilling_activation_memory_count.items()}
## Convert dictionaries to pandas dataframes for table display
df_operation_count = pd.DataFrame(list(operation_items.items()), columns=["Operation", "FLOPS"])
df_subtotal_operation_count = pd.DataFrame(list(subtotal_operation_items.items()), columns=["Operation", "FLOPS"])
df_operation_count["Activation (Byte)"] = df_operation_count["Operation"].map(prefilling_activation_memory_count)
df_operation_count["Arithmetic Intensity"] = df_operation_count["Operation"].map(prefilling_arithmetic_intensity)
df_subtotal_operation_count["Activation (Byte)"] = df_subtotal_operation_count["Operation"].map(prefilling_activation_memory_count)
df_subtotal_operation_count["Arithmetic Intensity"] = df_subtotal_operation_count["Operation"].map(prefilling_arithmetic_intensity)
header4("Inference Ops: Prefilling")
st.markdown(create_table(df_operation_count))
header5("Summary: Prefilling")
st.markdown(create_table(df_subtotal_operation_count))
st.write(f"Prefillng throughput (tokens/s): {inference_info['inference_prefilling_throughput']:.2f}")
st.write(f"FLOPS latency: {inference_info['inference_prefilling_time']}")
st.write(f"Memory latency: {inference_info['prefilling_memory_latency']}")
if inference_config['KV_cache']:
st.write(f"kv cache (Byte): {cached_parameter_count['kv_cache']:,}")
with col4: # Generation
generation_operation_count = generation_operation(model_config, inference_config)
generation_activation_memory_count = generation_activation_memory(model_config, inference_config)
inference_info['inference_generation_time'] = generation_operation_count['total'] / (gpu_config['TFLOP']*1024**4)
inference_info['inference_generation_throughput'] = inference_config['output_seq_length']*inference_config['batchsize']/inference_info['inference_generation_time']
inference_info['inference_client_generation_throughput'] = inference_config['output_seq_length']*inference_config['batchsize'] / (inference_info['inference_prefilling_time'] + inference_info['inference_generation_time'])
inference_info['generation_memory_latency'] = generation_activation_memory_count['total'] / (gpu_config['memory_bandwidth']*1024**3)
cached_parameter_count['kv_cache'] = 2 * (inference_config['batchsize'] * (model_config['hidden_size'] * model_config['num_hidden_layers'] * (inference_config['input_seq_length']+inference_config['output_seq_length'])))
operation_items = {key: "{:,}".format(int(generation_operation_count[key])) for key in generation_operation_count if key not in subtotal_operations}
subtotal_operation_items = {key: "{:,}".format(int(generation_operation_count[key])) for key in generation_operation_count if key in subtotal_operations}
generation_activation_memory_count = {key: "{:,}".format(int(value)) for key, value in generation_activation_memory_count.items()}
## Convert dictionaries to pandas dataframes for table display
df_operation_count = pd.DataFrame(list(operation_items.items()), columns=["Operation", "FLOPS"])
df_subtotal_operation_count = pd.DataFrame(list(subtotal_operation_items.items()), columns=["Operation", "FLOPS"])
#df_operation_count["Activation (Byte)"] = df_operation_count["Operation"].map(generation_activation_memory_count)
#df_subtotal_operation_count["Activation (Byte)"] = df_subtotal_operation_count["Operation"].map(generation_activation_memory_count)
header4("Inference Ops: Generation")
st.markdown(create_table(df_operation_count))
header5("Summary: Generation")
st.markdown(create_table(df_subtotal_operation_count))
st.write(f"Generation-only throughput (tokens/s): {inference_info['inference_generation_throughput']:.2f}")
st.write(f"(Client) Generation throughput (tokens/s): {inference_info['inference_client_generation_throughput']:.2f}")
st.write(f"FLOPS latency: {inference_info['inference_generation_time']}")
#st.write(f"Memory latency: {inference_info['generation_memory_latency']}")
if inference_config['KV_cache']:
st.write(f"kv cache (Byte): {cached_parameter_count['kv_cache']:,}") |