File size: 7,205 Bytes
a492ba5
7c7890b
 
 
 
 
 
 
 
 
 
 
 
 
a7d4e24
7c7890b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
127dbd1
 
7c7890b
a492ba5
 
 
 
 
 
 
 
 
 
7c7890b
a492ba5
 
 
 
 
 
 
 
 
 
 
7c7890b
 
 
a492ba5
 
 
 
 
 
46f091b
 
a492ba5
46f091b
 
a492ba5
 
 
 
46f091b
a492ba5
 
a7d4e24
 
 
 
a492ba5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c7890b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a492ba5
7c7890b
 
 
 
 
 
 
 
a492ba5
7c7890b
127dbd1
0e16491
127dbd1
7c7890b
68266c2
127dbd1
366d3dc
7c7890b
 
 
0e16491
 
 
a492ba5
0e16491
 
 
a492ba5
 
953c653
 
 
 
 
 
 
 
4b5e91d
a492ba5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b1d661
 
 
 
 
 
7c7890b
0e16491
 
a1fbe0d
7c7890b
0e16491
95e708c
7e7b6cd
 
4b5e91d
7e7b6cd
 
 
 
 
 
7c7890b
 
 
a492ba5
7c7890b
 
 
 
a492ba5
 
 
 
 
 
 
 
7c7890b
 
127dbd1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
from diffusers import AutoPipelineForImage2Image, AutoPipelineForText2Image
import torch
import os

try:
    import intel_extension_for_pytorch as ipex
except:
    pass

from PIL import Image
import numpy as np
import gradio as gr
import psutil
import time
import math

SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", None)
TORCH_COMPILE = os.environ.get("TORCH_COMPILE", None)
HF_TOKEN = os.environ.get("HF_TOKEN", None)
# check if MPS is available OSX only M1/M2/M3 chips
mps_available = hasattr(torch.backends, "mps") and torch.backends.mps.is_available()
xpu_available = hasattr(torch, "xpu") and torch.xpu.is_available()
device = torch.device(
    "cuda" if torch.cuda.is_available() else "xpu" if xpu_available else "cpu"
)
torch_device = device
torch_dtype = torch.float16

print(f"SAFETY_CHECKER: {SAFETY_CHECKER}")
print(f"TORCH_COMPILE: {TORCH_COMPILE}")
print(f"device: {device}")

if mps_available:
    device = torch.device("mps")
    torch_device = "cpu"
    torch_dtype = torch.float32

#

if SAFETY_CHECKER == "True":
    i2i_pipe = AutoPipelineForImage2Image.from_pretrained(
        "stabilityai/sdxl-turbo",
        torch_dtype=torch_dtype,
        variant="fp16" if torch_dtype == torch.float16 else "fp32",
    )
    t2i_pipe = AutoPipelineForText2Image.from_pretrained(
        "stabilityai/sdxl-turbo",
        torch_dtype=torch_dtype,
        variant="fp16" if torch_dtype == torch.float16 else "fp32",
    )
else:
    i2i_pipe = AutoPipelineForImage2Image.from_pretrained(
        "stabilityai/sdxl-turbo",
        safety_checker=None,
        torch_dtype=torch_dtype,
        variant="fp16" if torch_dtype == torch.float16 else "fp32",
    )
    t2i_pipe = AutoPipelineForText2Image.from_pretrained(
        "stabilityai/sdxl-turbo",
        safety_checker=None,
        torch_dtype=torch_dtype,
        variant="fp16" if torch_dtype == torch.float16 else "fp32",
    )


t2i_pipe.to(device=torch_device, dtype=torch_dtype).to(device)
t2i_pipe.set_progress_bar_config(disable=True)
i2i_pipe.to(device=torch_device, dtype=torch_dtype).to(device)
i2i_pipe.set_progress_bar_config(disable=True)


def resize_crop(image, size=512):
    image = image.convert("RGB")
    w, h = image.size
    image = image.resize((size, int(size * (h / w))), Image.BICUBIC)
    return image


async def predict(init_image, prompt, strength, steps, seed=1231231):
    if init_image is not None:
        init_image = resize_crop(init_image)
        generator = torch.manual_seed(seed)
        last_time = time.time()
    
        if int(steps * strength) < 1:
            steps = math.ceil(1 / max(0.10, strength))
            
        results = i2i_pipe(
            prompt=prompt,
            image=init_image,
            generator=generator,
            num_inference_steps=steps,
            guidance_scale=0.0,
            strength=strength,
            width=512,
            height=512,
            output_type="pil",
        )
    else:
        generator = torch.manual_seed(seed)
        last_time = time.time()
        results = t2i_pipe(
            prompt=prompt,
            generator=generator,
            num_inference_steps=steps,
            guidance_scale=0.0,
            width=512,
            height=512,
            output_type="pil",
        )
    print(f"Pipe took {time.time() - last_time} seconds")
    nsfw_content_detected = (
        results.nsfw_content_detected[0]
        if "nsfw_content_detected" in results
        else False
    )
    if nsfw_content_detected:
        gr.Warning("NSFW content detected.")
        return Image.new("RGB", (512, 512))
    return results.images[0]


css = """
#container{
    margin: 0 auto;
    max-width: 80rem;
}
#intro{
    max-width: 100%;
    text-align: center;
    margin: 0 auto;
}
"""
with gr.Blocks(css=css) as demo:
    init_image_state = gr.State()
    with gr.Column(elem_id="container"):

        # TITLE AND SUBTITLE OF PAGE

        gr.Markdown(
            """# Sissy Diffusion XL Turbo
            ## Text-to-Image and Image-to-Image generation; as fast as you can type.
            SDXL can generate images instantly, with no active censors. [Alyxsissy](https://www.alyxsissy.com/)
            """,
            elem_id="intro",
        )
        
        # PROMPT INPUT, UPLOAD IMAGE, GENERATE BUTTON, AND IMAGE OUTPUT

        with gr.Row():

            # ADVANCED OPTIONS MENU

            with gr.Column():
                image = gr.Image(type="filepath")
                with gr.Row():
                    prompt = gr.Textbox(
                    placeholder="Enter a prompt",
                    scale=5,
                    container=False,
                )
                generate_bt = gr.Button("Generate", scale=1)
                
                with gr.Accordion("Advanced Options", open=False):
                    strength = gr.Slider(
                        label="Strength",
                        value=0.7,
                        minimum=0.0,
                        maximum=1.0,
                        step=0.001,
                    )
                    steps = gr.Slider(
                        label="Steps", value=2, minimum=1, maximum=10, step=1
                    )
                    seed = gr.Slider(
                        randomize=True,
                        minimum=0,
                        maximum=12013012031030,
                        label="Seed",
                        step=1,
                    )
                with gr.Column():
                    image_input = gr.Image(
                    sources=["upload", "webcam", "clipboard"],
                    label="Webcam",
                    type="pil",
                )

            # HELP AND DIRECTIONS MENU

        with gr.Accordion("Help and Directions", open=False):
            gr.Markdown(
                """ # Running SDXL Turbo `Alyxsissy`
            ## How do I use it?
            #### Start typing your prompt in the text box, and the model will generate images constantly as you type. 
            #### you can also upload or paste an image, and generate variations based on your image, and prompt.
            ## Advanced Options
            ### Strength
            #### Controls how much the prompt affect the image.
            ### Steps
            #### Controls how many times the model will run on the image.
            ### Seed
            #### Every seed is a different variation of your combo of prompt, image, strength, and steps.
            """
            )

        inputs = [image_input, prompt, strength, steps, seed]
        generate_bt.click(fn=predict, inputs=inputs, outputs=image, show_progress=False)
        prompt.input(fn=predict, inputs=inputs, outputs=image, show_progress=False)
        steps.change(fn=predict, inputs=inputs, outputs=image, show_progress=False)
        seed.change(fn=predict, inputs=inputs, outputs=image, show_progress=False)
        strength.change(fn=predict, inputs=inputs, outputs=image, show_progress=False)
        image_input.change(
            fn=lambda x: x,
            inputs=image_input,
            outputs=init_image_state,
            show_progress=False,
            queue=False,
        )

demo.queue()
demo.launch()