Spaces:
Paused
Paused
File size: 7,205 Bytes
a492ba5 7c7890b a7d4e24 7c7890b 127dbd1 7c7890b a492ba5 7c7890b a492ba5 7c7890b a492ba5 46f091b a492ba5 46f091b a492ba5 46f091b a492ba5 a7d4e24 a492ba5 7c7890b a492ba5 7c7890b a492ba5 7c7890b 127dbd1 0e16491 127dbd1 7c7890b 68266c2 127dbd1 366d3dc 7c7890b 0e16491 a492ba5 0e16491 a492ba5 953c653 4b5e91d a492ba5 4b1d661 7c7890b 0e16491 a1fbe0d 7c7890b 0e16491 95e708c 7e7b6cd 4b5e91d 7e7b6cd 7c7890b a492ba5 7c7890b a492ba5 7c7890b 127dbd1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
from diffusers import AutoPipelineForImage2Image, AutoPipelineForText2Image
import torch
import os
try:
import intel_extension_for_pytorch as ipex
except:
pass
from PIL import Image
import numpy as np
import gradio as gr
import psutil
import time
import math
SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", None)
TORCH_COMPILE = os.environ.get("TORCH_COMPILE", None)
HF_TOKEN = os.environ.get("HF_TOKEN", None)
# check if MPS is available OSX only M1/M2/M3 chips
mps_available = hasattr(torch.backends, "mps") and torch.backends.mps.is_available()
xpu_available = hasattr(torch, "xpu") and torch.xpu.is_available()
device = torch.device(
"cuda" if torch.cuda.is_available() else "xpu" if xpu_available else "cpu"
)
torch_device = device
torch_dtype = torch.float16
print(f"SAFETY_CHECKER: {SAFETY_CHECKER}")
print(f"TORCH_COMPILE: {TORCH_COMPILE}")
print(f"device: {device}")
if mps_available:
device = torch.device("mps")
torch_device = "cpu"
torch_dtype = torch.float32
#
if SAFETY_CHECKER == "True":
i2i_pipe = AutoPipelineForImage2Image.from_pretrained(
"stabilityai/sdxl-turbo",
torch_dtype=torch_dtype,
variant="fp16" if torch_dtype == torch.float16 else "fp32",
)
t2i_pipe = AutoPipelineForText2Image.from_pretrained(
"stabilityai/sdxl-turbo",
torch_dtype=torch_dtype,
variant="fp16" if torch_dtype == torch.float16 else "fp32",
)
else:
i2i_pipe = AutoPipelineForImage2Image.from_pretrained(
"stabilityai/sdxl-turbo",
safety_checker=None,
torch_dtype=torch_dtype,
variant="fp16" if torch_dtype == torch.float16 else "fp32",
)
t2i_pipe = AutoPipelineForText2Image.from_pretrained(
"stabilityai/sdxl-turbo",
safety_checker=None,
torch_dtype=torch_dtype,
variant="fp16" if torch_dtype == torch.float16 else "fp32",
)
t2i_pipe.to(device=torch_device, dtype=torch_dtype).to(device)
t2i_pipe.set_progress_bar_config(disable=True)
i2i_pipe.to(device=torch_device, dtype=torch_dtype).to(device)
i2i_pipe.set_progress_bar_config(disable=True)
def resize_crop(image, size=512):
image = image.convert("RGB")
w, h = image.size
image = image.resize((size, int(size * (h / w))), Image.BICUBIC)
return image
async def predict(init_image, prompt, strength, steps, seed=1231231):
if init_image is not None:
init_image = resize_crop(init_image)
generator = torch.manual_seed(seed)
last_time = time.time()
if int(steps * strength) < 1:
steps = math.ceil(1 / max(0.10, strength))
results = i2i_pipe(
prompt=prompt,
image=init_image,
generator=generator,
num_inference_steps=steps,
guidance_scale=0.0,
strength=strength,
width=512,
height=512,
output_type="pil",
)
else:
generator = torch.manual_seed(seed)
last_time = time.time()
results = t2i_pipe(
prompt=prompt,
generator=generator,
num_inference_steps=steps,
guidance_scale=0.0,
width=512,
height=512,
output_type="pil",
)
print(f"Pipe took {time.time() - last_time} seconds")
nsfw_content_detected = (
results.nsfw_content_detected[0]
if "nsfw_content_detected" in results
else False
)
if nsfw_content_detected:
gr.Warning("NSFW content detected.")
return Image.new("RGB", (512, 512))
return results.images[0]
css = """
#container{
margin: 0 auto;
max-width: 80rem;
}
#intro{
max-width: 100%;
text-align: center;
margin: 0 auto;
}
"""
with gr.Blocks(css=css) as demo:
init_image_state = gr.State()
with gr.Column(elem_id="container"):
# TITLE AND SUBTITLE OF PAGE
gr.Markdown(
"""# Sissy Diffusion XL Turbo
## Text-to-Image and Image-to-Image generation; as fast as you can type.
SDXL can generate images instantly, with no active censors. [Alyxsissy](https://www.alyxsissy.com/)
""",
elem_id="intro",
)
# PROMPT INPUT, UPLOAD IMAGE, GENERATE BUTTON, AND IMAGE OUTPUT
with gr.Row():
# ADVANCED OPTIONS MENU
with gr.Column():
image = gr.Image(type="filepath")
with gr.Row():
prompt = gr.Textbox(
placeholder="Enter a prompt",
scale=5,
container=False,
)
generate_bt = gr.Button("Generate", scale=1)
with gr.Accordion("Advanced Options", open=False):
strength = gr.Slider(
label="Strength",
value=0.7,
minimum=0.0,
maximum=1.0,
step=0.001,
)
steps = gr.Slider(
label="Steps", value=2, minimum=1, maximum=10, step=1
)
seed = gr.Slider(
randomize=True,
minimum=0,
maximum=12013012031030,
label="Seed",
step=1,
)
with gr.Column():
image_input = gr.Image(
sources=["upload", "webcam", "clipboard"],
label="Webcam",
type="pil",
)
# HELP AND DIRECTIONS MENU
with gr.Accordion("Help and Directions", open=False):
gr.Markdown(
""" # Running SDXL Turbo `Alyxsissy`
## How do I use it?
#### Start typing your prompt in the text box, and the model will generate images constantly as you type.
#### you can also upload or paste an image, and generate variations based on your image, and prompt.
## Advanced Options
### Strength
#### Controls how much the prompt affect the image.
### Steps
#### Controls how many times the model will run on the image.
### Seed
#### Every seed is a different variation of your combo of prompt, image, strength, and steps.
"""
)
inputs = [image_input, prompt, strength, steps, seed]
generate_bt.click(fn=predict, inputs=inputs, outputs=image, show_progress=False)
prompt.input(fn=predict, inputs=inputs, outputs=image, show_progress=False)
steps.change(fn=predict, inputs=inputs, outputs=image, show_progress=False)
seed.change(fn=predict, inputs=inputs, outputs=image, show_progress=False)
strength.change(fn=predict, inputs=inputs, outputs=image, show_progress=False)
image_input.change(
fn=lambda x: x,
inputs=image_input,
outputs=init_image_state,
show_progress=False,
queue=False,
)
demo.queue()
demo.launch() |