from diffusers import AutoPipelineForImage2Image, AutoPipelineForText2Image import torch import os try: import intel_extension_for_pytorch as ipex except: pass from PIL import Image import numpy as np import gradio as gr import psutil import time import math SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", None) TORCH_COMPILE = os.environ.get("TORCH_COMPILE", None) HF_TOKEN = os.environ.get("HF_TOKEN", None) # check if MPS is available OSX only M1/M2/M3 chips mps_available = hasattr(torch.backends, "mps") and torch.backends.mps.is_available() xpu_available = hasattr(torch, "xpu") and torch.xpu.is_available() device = torch.device( "cuda" if torch.cuda.is_available() else "xpu" if xpu_available else "cpu" ) torch_device = device torch_dtype = torch.float16 print(f"SAFETY_CHECKER: {SAFETY_CHECKER}") print(f"TORCH_COMPILE: {TORCH_COMPILE}") print(f"device: {device}") if mps_available: device = torch.device("mps") torch_device = "cpu" torch_dtype = torch.float32 if SAFETY_CHECKER == "True": i2i_pipe = AutoPipelineForImage2Image.from_pretrained( "stabilityai/sdxl-turbo", torch_dtype=torch_dtype, variant="fp16" if torch_dtype == torch.float16 else "fp32", ) t2i_pipe = AutoPipelineForText2Image.from_pretrained( "stabilityai/sdxl-turbo", torch_dtype=torch_dtype, variant="fp16" if torch_dtype == torch.float16 else "fp32", ) else: i2i_pipe = AutoPipelineForImage2Image.from_pretrained( "stabilityai/sdxl-turbo", safety_checker=None, torch_dtype=torch_dtype, variant="fp16" if torch_dtype == torch.float16 else "fp32", ) t2i_pipe = AutoPipelineForText2Image.from_pretrained( "stabilityai/sdxl-turbo", safety_checker=None, torch_dtype=torch_dtype, variant="fp16" if torch_dtype == torch.float16 else "fp32", ) t2i_pipe.to(device=torch_device, dtype=torch_dtype).to(device) t2i_pipe.set_progress_bar_config(disable=True) i2i_pipe.to(device=torch_device, dtype=torch_dtype).to(device) i2i_pipe.set_progress_bar_config(disable=True) def resize_crop(image, size=512): image = image.convert("RGB") w, h = image.size image = image.resize((size, int(size * (h / w))), Image.BICUBIC) return image # Global variable to store the selected image index selected_image_index = None # Load images from the 'images' folder image_folder = 'images' images = [Image.open(os.path.join(image_folder, img)) for img in sorted(os.listdir(image_folder)) if img.endswith(('.png', '.jpg', '.jpeg'))] # Ensure that there are 34 images assert len(images) == 34, "There should be exactly 34 images in the 'images' folder." # Function to handle image selection async def select_fn(data: gr.SelectData, prompt: str): global selected_image_index selected_image_index = data.index if prompt == "": print("Prompt is empty, returning original image") return images[selected_image_index] return await predict(prompt) async def predict(prompt): global selected_image_index strength = 0.49999999999999999 steps = 2 if selected_image_index is not None: init_image = images[selected_image_index] init_image = resize_crop(init_image) generator = torch.manual_seed(123123) last_time = time.time() if int(steps * strength) < 1: steps = math.ceil(1 / max(0.10, strength)) results = i2i_pipe( prompt=prompt, image=init_image, generator=generator, num_inference_steps=steps, guidance_scale=0.0, strength=strength, width=512, height=512, output_type="pil", ) print(f"Pipe took {time.time() - last_time} seconds") nsfw_content_detected = ( results.nsfw_content_detected[0] if "nsfw_content_detected" in results else False ) if nsfw_content_detected: gr.Warning("NSFW content detected.") return Image.new("RGB", (512, 512)) return results.images[0] # Create the Gradio interface with gr.Blocks() as app: gr.Markdown('''# Rorschach 🎭 ### 1. Select a CRASH REPORT image ### 2. Describe what you see CRASH REPORT was a self-published, 72-page book by NoPattern Studio released in November, 2019. Limited to an edition of 300, the book contained a year's worth of experimental, exploratory 3D imagery generated entirely in Photoshop. [CRASH REPORT site](https://nopattern.com/CRASH-REPORT) [see this space's lineage graph](https://huggingface.co/spaces/EQTYLab/lineage-explorer?repo=https://huggingface.co/NoPattern/Rorschach)''', elem_id="main_title") #gr.LoginButton(elem_classes=["login_logout"]) with gr.Row(): with gr.Column(): image_gallery = gr.Gallery(value=images, columns=4) with gr.Column(): prompt = gr.Textbox(label="I see...") output = gr.Image(label="Generation") # button = gr.Button("Rorschachify!") image_gallery.select(select_fn, inputs=[prompt], outputs=output, show_progress=False) # button.click(fn=predict, inputs=[prompt], outputs=output, show_progress=False) prompt.change(fn=predict, inputs=[prompt], outputs=output, show_progress=False) # Run the app app.queue() app.launch()