NimaBoscarino commited on
Commit
3d738ec
β€’
1 Parent(s): 043d857

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -10
app.py CHANGED
@@ -1,19 +1,21 @@
1
  from sentence_transformers import SentenceTransformer, util
2
  from huggingface_hub import hf_hub_download
 
3
  import pickle
4
  import pandas as pd
5
  import gradio as gr
6
 
7
  pd.options.mode.chained_assignment = None # Turn off SettingWithCopyWarning
8
 
9
- pickled = pickle.load(open(hf_hub_download("NimaBoscarino/playlist-generator", filename="clean-large_embeddings_msmarco-MiniLM-L-6-v3.pkl"), "rb"))
10
- songs = pd.read_csv(hf_hub_download("NimaBoscarino/playlist-generator", filename="songs_new.csv"))
11
- verses = pickle.load(open(hf_hub_download("NimaBoscarino/playlist-generator", filename="verses.pkl"), "rb"))
12
- lyrics = pd.read_csv(hf_hub_download("NimaBoscarino/playlist-generator", filename="lyrics_new.csv"))
 
13
 
14
  embedder = SentenceTransformer('msmarco-MiniLM-L-6-v3')
15
 
16
- genius_ids = pickled["genius_ids"]
17
  corpus_embeddings = pickled["embeddings"]
18
 
19
 
@@ -23,10 +25,10 @@ def generate_playlist(prompt):
23
  hits = pd.DataFrame(hits[0], columns=['corpus_id', 'score'])
24
 
25
  verse_match = verses.iloc[hits['corpus_id']]
26
- verse_match = verse_match.drop_duplicates(subset=["genius_id"])
27
- song_match = songs[songs["genius_id"].isin(verse_match["genius_id"].values)]
28
- song_match.genius_id = pd.Categorical(song_match.genius_id, categories=verse_match["genius_id"].values)
29
- song_match = song_match.sort_values("genius_id")
30
  song_match = song_match[0:9] # Only grab the top 9
31
 
32
  song_names = list(song_match["full_title"])
@@ -40,7 +42,7 @@ def generate_playlist(prompt):
40
 
41
 
42
  def set_lyrics(full_title):
43
- lyrics_text = lyrics[lyrics["genius_id"].isin(songs[songs["full_title"] == full_title]["genius_id"])]["text"].iloc[0]
44
  return gr.Textbox.update(value=lyrics_text)
45
 
46
 
 
1
  from sentence_transformers import SentenceTransformer, util
2
  from huggingface_hub import hf_hub_download
3
+ import os
4
  import pickle
5
  import pandas as pd
6
  import gradio as gr
7
 
8
  pd.options.mode.chained_assignment = None # Turn off SettingWithCopyWarning
9
 
10
+ auth_token = os.environ.get("TOKEN_FROM_SECRET") or True
11
+ pickled = pickle.load(open(hf_hub_download("NimaBoscarino/playlist-generator", repo_type="dataset", filename="clean-large_embeddings_msmarco-MiniLM-L-6-v3.pkl"), "rb"))
12
+ songs = pd.read_csv(hf_hub_download("NimaBoscarino/playlist-generator", repo_type="dataset", filename="songs_new.csv"))
13
+ verses = pd.read_csv(hf_hub_download("NimaBoscarino/playlist-generator-private", repo_type="dataset", filename="verses.csv", use_auth_token=True))
14
+ lyrics = pd.read_csv(hf_hub_download("NimaBoscarino/playlist-generator-private", repo_type="dataset", filename="lyrics_new.csv", use_auth_token=True))
15
 
16
  embedder = SentenceTransformer('msmarco-MiniLM-L-6-v3')
17
 
18
+ song_ids = pickled["song_ids"]
19
  corpus_embeddings = pickled["embeddings"]
20
 
21
 
 
25
  hits = pd.DataFrame(hits[0], columns=['corpus_id', 'score'])
26
 
27
  verse_match = verses.iloc[hits['corpus_id']]
28
+ verse_match = verse_match.drop_duplicates(subset=["song_id"])
29
+ song_match = songs[songs["song_id"].isin(verse_match["song_id"].values)]
30
+ song_match.song_id = pd.Categorical(song_match.song_id, categories=verse_match["song_id"].values)
31
+ song_match = song_match.sort_values("song_id")
32
  song_match = song_match[0:9] # Only grab the top 9
33
 
34
  song_names = list(song_match["full_title"])
 
42
 
43
 
44
  def set_lyrics(full_title):
45
+ lyrics_text = lyrics[lyrics["song_id"].isin(songs[songs["full_title"] == full_title]["song_id"])]["text"].iloc[0]
46
  return gr.Textbox.update(value=lyrics_text)
47
 
48