Spaces:
Runtime error
Runtime error
# -*- coding: utf-8 -*- | |
"""Untitled1.ipynb | |
Automatically generated by Colaboratory. | |
Original file is located at | |
https://colab.research.google.com/drive/1OpumpFAYHp3dJhfH9ZUWpQRDx9FqOVOd | |
""" | |
import requests | |
from bs4 import BeautifulSoup | |
import pandas as pd | |
import matplotlib.pyplot as plt | |
def extract_question_options(url): | |
response = requests.get(url) | |
soup = BeautifulSoup(response.content, 'html.parser') | |
tables = soup.find_all('table', class_='menu-tbl') | |
question_ids = [] | |
chosen_options = [] | |
option_1_ids = [] | |
option_2_ids = [] | |
option_3_ids = [] | |
option_4_ids = [] | |
for table in tables: | |
question_id = table.find('td', string='Question ID :').find_next('td').text | |
chosen_option = table.find('td', string='Chosen Option :').find_next('td').text | |
option_1_id = table.find('td', string='Option 1 ID :').find_next('td').text | |
option_2_id = table.find('td', string='Option 2 ID :').find_next('td').text | |
option_3_id = table.find('td', string='Option 3 ID :').find_next('td').text | |
option_4_id = table.find('td', string='Option 4 ID :').find_next('td').text | |
status = table.find('td', string='Status :').find_next('td').text | |
if 'Not Answered' in status or 'Marked For Review' in status: | |
chosen_option = 'Not Attempted' | |
question_ids.append(question_id) | |
chosen_options.append(chosen_option) | |
option_1_ids.append(option_1_id) | |
option_2_ids.append(option_2_id) | |
option_3_ids.append(option_3_id) | |
option_4_ids.append(option_4_id) | |
data = { | |
'Question ID': question_ids, | |
'Chosen Option': chosen_options, | |
'Option 1 ID': option_1_ids, | |
'Option 2 ID': option_2_ids, | |
'Option 3 ID': option_3_ids, | |
'Option 4 ID': option_4_ids | |
} | |
df = pd.DataFrame(data) | |
new_data = [] | |
for _, row in df.iterrows(): | |
chosen_option = row['Chosen Option'] | |
question_id = row['Question ID'] | |
if chosen_option == 'Not Attempted': | |
option_id = 'Not Attempted' | |
else: | |
option_id = row[f'Option {chosen_option} ID'] | |
new_data.append({'Question ID': question_id, 'My Options(s)': option_id}) | |
new_df = pd.DataFrame(new_data) | |
return new_df | |
def extract_question_info(data): | |
lines = data.split("\n") | |
result = [] | |
skip_row = False | |
for line in lines: | |
if line: | |
if skip_row: | |
skip_row = False | |
continue | |
parts = line.split("\t") | |
question_id = parts[2] | |
correct_option = "" | |
for option in parts[3:]: | |
if option != "None of These": | |
correct_option = option | |
break | |
result.append({"Question ID": question_id, "Correct Option(s)": correct_option}) | |
skip_row = True | |
df = pd.DataFrame(result) | |
return df | |
def compare_answers(data, url): | |
# Call extract_question_info to get the ans_df DataFrame | |
ans_df = extract_question_info(data) | |
# Call extract_question_options to get the new_df DataFrame | |
new_df = extract_question_options(url) | |
# Merge the two DataFrames based on the 'Question ID' column | |
merged_df = ans_df.merge(new_df, on='Question ID', how='inner') | |
# Compare the Correct Option(s) and My Options(s) columns and assign marks | |
merged_df['Marks'] = merged_df.apply(lambda row: 4 if row['Correct Option(s)'] == row['My Options(s)'] | |
else (-1 if row['My Options(s)'] != 'Not Attempted' else 0), axis=1) | |
# Calculate total marks | |
total_marks = len(ans_df) * 4 | |
# Calculate number of wrong answers | |
wrong_answers = len(merged_df[merged_df['Marks'] == -1]) | |
# Calculate number of right answers | |
right_answers = len(merged_df[merged_df['Marks'] == 4]) | |
# Calculate number of not attempted questions | |
not_attempted = len(new_df[new_df['My Options(s)'] == 'Not Attempted']) | |
# Calculate marks obtained | |
marks_obtained = merged_df['Marks'].sum() | |
# Calculate percentage score | |
percentage_score = (marks_obtained / total_marks) * 100 | |
# Create the markdown text | |
text = f"Total Marks: {total_marks}\n" | |
text += f"Number of Wrong Answers: {wrong_answers}\n" | |
text += f"Number of Right Answers: {right_answers}\n" | |
text += f"Number of Not Attempted Questions: {not_attempted}\n" | |
text += f"Marks Obtained: {marks_obtained}\n" | |
text += f"Percentage Score: {percentage_score}\n" | |
# Plotting the overall performance | |
labels = ['Right Answers', 'Wrong Answers', 'Not Attempted'] | |
sizes = [right_answers, wrong_answers, not_attempted] | |
colors = ['#66BB6A', '#EF5350', '#FFA726'] | |
plt.pie(sizes, labels=labels, colors=colors, autopct='%1.1f%%', startangle=90) | |
plt.axis('equal') | |
plt.title('Overall Performance') | |
return text, merged_df, plt | |
import gradio as gr | |
with gr.Blocks(theme='gradio/soft') as demo: | |
gr.Markdown(""" | |
## FOLLOW THIS STEPS TO EXTRACT THE DATA | |
![Image](https://i.imgur.com/9dzYJZ1.gif) | |
""") | |
data = gr.Textbox(label="Correct Options in The Website",placeholder= | |
"""1 Data Science Artificial Intelligence_Eng - PART A 123456789 987654321 | |
987654321 987654322 987654323 987654324 None of These | |
2 Data Science Artificial Intelligence_Eng - PART A 234567890 123456789 | |
123456789 123456790 123456791 123456792 None of These | |
3 Data Science Artificial Intelligence_Eng - PART A 345678901 234567890 | |
234567890 234567891 234567892 234567893 None of These | |
4 Data Science Artificial Intelligence_Eng - PART A 456789012 345678901 | |
345678901 345678902 345678903 345678904 None of These | |
5 Data Science Artificial Intelligence_Eng - PART A 567890123 456789012 | |
456789012 456789013 456789014 456789015 None of These | |
6 Data Science Artificial Intelligence_Eng - PART A 678901234 567890123 | |
567890123 567890124 567890125 567890126 None of These | |
7 Data Science Artificial Intelligence_Eng - PART A 789012345 678901234 | |
678901234 678901235 678901236 678901237 None of These | |
8 Data Science Artificial Intelligence_Eng - PART A 890123456 789012345 | |
789012345 789012346 789012347 789012348 None of These | |
9 Data Science Artificial Intelligence_Eng - PART A 901234567 890123456 | |
890123456 890123457 890123458 890123459 None of These | |
10 Data Science Artificial Intelligence_Eng - PART A 123456789 901234567 | |
901234567 901234568 901234569 901234570 None of These | |
11 Data Science Artificial Intelligence_Eng - PART A 234567890 123456789 | |
123456789 123456790 123456791 123456792 None of These | |
12 Data Science Artificial Intelligence_Eng - PART A 345678901 234567890 | |
234567890 234567891 234567892 234567893 None of These | |
13 Data Science Artificial Intelligence_Eng - PART A 456789012 345678901 | |
345678901 345678902 345678903 | |
. | |
. | |
. | |
. | |
95 Data Science Artificial Intelligence_Eng - PART A 678901234 567890123 | |
567890123 567890124 567890125 567890126 None of These | |
96 Data Science Artificial Intelligence_Eng - PART A 789012345 678901234 | |
678901234 678901235 678901236 678901237 None of These | |
97 Data Science Artificial Intelligence_Eng - PART A 890123456 789012345 | |
789012345 789012346 789012347 789012348 None of These | |
98 Data Science Artificial Intelligence_Eng - PART A 901234567 890123456 | |
890123456 890123457 890123458 890123459 None of These | |
99 Data Science Artificial Intelligence_Eng - PART A 123456789 901234567 | |
901234567 901234568 901234569 901234570 None of These | |
100 Data Science Artificial Intelligence_Eng - PART A 234567890 123456789 | |
123456789 123456790 123456791 123456792 None of These""", lines=5) | |
gr.Markdown("![Image](https://i.ibb.co/FVwGm6L/Screenshot-179.png)") | |
url = gr.Textbox(label="Link to your Answers URL",placeholder="https://cdn3.digialm.com//per/g28/pub/XXXX/touchstone/AssessmentQPHTMLMode1//XXXXXXXX/XXXXXXXX/XXXXXXXX/XXXXXXXXXXX.html") | |
btn = gr.Button(value="Check Your Answer!") | |
out = gr.Textbox(value="", label="Output") | |
out1 = gr.Plot() | |
out2=gr.Dataframe() | |
btn.click(compare_answers, inputs=[data, url], outputs=[out,out2,out1]) | |
gr.Markdown("Made with :heart: by Neelanjan Chakraborty") | |
if __name__ == "__main__": | |
demo.launch(debug= True) | |