nyonyong commited on
Commit
30c8b41
β€’
1 Parent(s): 0ed6548

First commit

Browse files
This view is limited to 50 files because it contains too many changes. Β  See raw diff
Files changed (50) hide show
  1. TextDetection/.dockerignore +222 -0
  2. TextDetection/LICENSE +661 -0
  3. TextDetection/__pycache__/export.cpython-310.pyc +0 -0
  4. TextDetection/__pycache__/export.cpython-39.pyc +0 -0
  5. TextDetection/benchmarks.py +174 -0
  6. TextDetection/classify/predict.py +226 -0
  7. TextDetection/classify/train.py +333 -0
  8. TextDetection/classify/tutorial.ipynb +0 -0
  9. TextDetection/classify/val.py +170 -0
  10. TextDetection/detect.py +271 -0
  11. TextDetection/export.py +863 -0
  12. TextDetection/hubconf.py +169 -0
  13. TextDetection/requirements.txt +49 -0
  14. TextDetection/runs/wordDetection/F1_curve.png +0 -0
  15. TextDetection/runs/wordDetection/PR_curve.png +0 -0
  16. TextDetection/runs/wordDetection/P_curve.png +0 -0
  17. TextDetection/runs/wordDetection/R_curve.png +0 -0
  18. TextDetection/runs/wordDetection/confusion_matrix.png +0 -0
  19. TextDetection/runs/wordDetection/hyp.yaml +28 -0
  20. TextDetection/runs/wordDetection/labels.jpg +0 -0
  21. TextDetection/runs/wordDetection/labels_correlogram.jpg +0 -0
  22. TextDetection/runs/wordDetection/opt.yaml +68 -0
  23. TextDetection/runs/wordDetection/results.csv +101 -0
  24. TextDetection/runs/wordDetection/results.png +0 -0
  25. TextDetection/runs/wordDetection/weights/best.pt +3 -0
  26. TextDetection/runs/wordDetection/weights/last.pt +3 -0
  27. TextDetection/segment/predict.py +284 -0
  28. TextDetection/segment/train.py +666 -0
  29. TextDetection/segment/tutorial.ipynb +595 -0
  30. TextDetection/segment/val.py +473 -0
  31. TextDetection/setup.cfg +56 -0
  32. TextDetection/utils/__init__.py +86 -0
  33. TextDetection/utils/__pycache__/__init__.cpython-310.pyc +0 -0
  34. TextDetection/utils/__pycache__/__init__.cpython-39.pyc +0 -0
  35. TextDetection/utils/__pycache__/augmentations.cpython-310.pyc +0 -0
  36. TextDetection/utils/__pycache__/augmentations.cpython-39.pyc +0 -0
  37. TextDetection/utils/__pycache__/autoanchor.cpython-310.pyc +0 -0
  38. TextDetection/utils/__pycache__/autoanchor.cpython-39.pyc +0 -0
  39. TextDetection/utils/__pycache__/dataloaders.cpython-310.pyc +0 -0
  40. TextDetection/utils/__pycache__/dataloaders.cpython-39.pyc +0 -0
  41. TextDetection/utils/__pycache__/downloads.cpython-310.pyc +0 -0
  42. TextDetection/utils/__pycache__/downloads.cpython-39.pyc +0 -0
  43. TextDetection/utils/__pycache__/general.cpython-310.pyc +0 -0
  44. TextDetection/utils/__pycache__/general.cpython-39.pyc +0 -0
  45. TextDetection/utils/__pycache__/metrics.cpython-310.pyc +0 -0
  46. TextDetection/utils/__pycache__/metrics.cpython-39.pyc +0 -0
  47. TextDetection/utils/__pycache__/plots.cpython-310.pyc +0 -0
  48. TextDetection/utils/__pycache__/plots.cpython-39.pyc +0 -0
  49. TextDetection/utils/__pycache__/torch_utils.cpython-310.pyc +0 -0
  50. TextDetection/utils/__pycache__/torch_utils.cpython-39.pyc +0 -0
TextDetection/.dockerignore ADDED
@@ -0,0 +1,222 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Repo-specific DockerIgnore -------------------------------------------------------------------------------------------
2
+ .git
3
+ .cache
4
+ .idea
5
+ runs
6
+ output
7
+ coco
8
+ storage.googleapis.com
9
+
10
+ data/samples/*
11
+ **/results*.csv
12
+ *.jpg
13
+
14
+ # Neural Network weights -----------------------------------------------------------------------------------------------
15
+ **/*.pt
16
+ **/*.pth
17
+ **/*.onnx
18
+ **/*.engine
19
+ **/*.mlmodel
20
+ **/*.torchscript
21
+ **/*.torchscript.pt
22
+ **/*.tflite
23
+ **/*.h5
24
+ **/*.pb
25
+ *_saved_model/
26
+ *_web_model/
27
+ *_openvino_model/
28
+
29
+ # Below Copied From .gitignore -----------------------------------------------------------------------------------------
30
+ # Below Copied From .gitignore -----------------------------------------------------------------------------------------
31
+
32
+
33
+ # GitHub Python GitIgnore ----------------------------------------------------------------------------------------------
34
+ # Byte-compiled / optimized / DLL files
35
+ __pycache__/
36
+ *.py[cod]
37
+ *$py.class
38
+
39
+ # C extensions
40
+ *.so
41
+
42
+ # Distribution / packaging
43
+ .Python
44
+ env/
45
+ build/
46
+ develop-eggs/
47
+ dist/
48
+ downloads/
49
+ eggs/
50
+ .eggs/
51
+ lib/
52
+ lib64/
53
+ parts/
54
+ sdist/
55
+ var/
56
+ wheels/
57
+ *.egg-info/
58
+ wandb/
59
+ .installed.cfg
60
+ *.egg
61
+
62
+ # PyInstaller
63
+ # Usually these files are written by a python script from a template
64
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
65
+ *.manifest
66
+ *.spec
67
+
68
+ # Installer logs
69
+ pip-log.txt
70
+ pip-delete-this-directory.txt
71
+
72
+ # Unit test / coverage reports
73
+ htmlcov/
74
+ .tox/
75
+ .coverage
76
+ .coverage.*
77
+ .cache
78
+ nosetests.xml
79
+ coverage.xml
80
+ *.cover
81
+ .hypothesis/
82
+
83
+ # Translations
84
+ *.mo
85
+ *.pot
86
+
87
+ # Django stuff:
88
+ *.log
89
+ local_settings.py
90
+
91
+ # Flask stuff:
92
+ instance/
93
+ .webassets-cache
94
+
95
+ # Scrapy stuff:
96
+ .scrapy
97
+
98
+ # Sphinx documentation
99
+ docs/_build/
100
+
101
+ # PyBuilder
102
+ target/
103
+
104
+ # Jupyter Notebook
105
+ .ipynb_checkpoints
106
+
107
+ # pyenv
108
+ .python-version
109
+
110
+ # celery beat schedule file
111
+ celerybeat-schedule
112
+
113
+ # SageMath parsed files
114
+ *.sage.py
115
+
116
+ # dotenv
117
+ .env
118
+
119
+ # virtualenv
120
+ .venv*
121
+ venv*/
122
+ ENV*/
123
+
124
+ # Spyder project settings
125
+ .spyderproject
126
+ .spyproject
127
+
128
+ # Rope project settings
129
+ .ropeproject
130
+
131
+ # mkdocs documentation
132
+ /site
133
+
134
+ # mypy
135
+ .mypy_cache/
136
+
137
+
138
+ # https://github.com/github/gitignore/blob/master/Global/macOS.gitignore -----------------------------------------------
139
+
140
+ # General
141
+ .DS_Store
142
+ .AppleDouble
143
+ .LSOverride
144
+
145
+ # Icon must end with two \r
146
+ Icon
147
+ Icon?
148
+
149
+ # Thumbnails
150
+ ._*
151
+
152
+ # Files that might appear in the root of a volume
153
+ .DocumentRevisions-V100
154
+ .fseventsd
155
+ .Spotlight-V100
156
+ .TemporaryItems
157
+ .Trashes
158
+ .VolumeIcon.icns
159
+ .com.apple.timemachine.donotpresent
160
+
161
+ # Directories potentially created on remote AFP share
162
+ .AppleDB
163
+ .AppleDesktop
164
+ Network Trash Folder
165
+ Temporary Items
166
+ .apdisk
167
+
168
+
169
+ # https://github.com/github/gitignore/blob/master/Global/JetBrains.gitignore
170
+ # Covers JetBrains IDEs: IntelliJ, RubyMine, PhpStorm, AppCode, PyCharm, CLion, Android Studio and WebStorm
171
+ # Reference: https://intellij-support.jetbrains.com/hc/en-us/articles/206544839
172
+
173
+ # User-specific stuff:
174
+ .idea/*
175
+ .idea/**/workspace.xml
176
+ .idea/**/tasks.xml
177
+ .idea/dictionaries
178
+ .html # Bokeh Plots
179
+ .pg # TensorFlow Frozen Graphs
180
+ .avi # videos
181
+
182
+ # Sensitive or high-churn files:
183
+ .idea/**/dataSources/
184
+ .idea/**/dataSources.ids
185
+ .idea/**/dataSources.local.xml
186
+ .idea/**/sqlDataSources.xml
187
+ .idea/**/dynamic.xml
188
+ .idea/**/uiDesigner.xml
189
+
190
+ # Gradle:
191
+ .idea/**/gradle.xml
192
+ .idea/**/libraries
193
+
194
+ # CMake
195
+ cmake-build-debug/
196
+ cmake-build-release/
197
+
198
+ # Mongo Explorer plugin:
199
+ .idea/**/mongoSettings.xml
200
+
201
+ ## File-based project format:
202
+ *.iws
203
+
204
+ ## Plugin-specific files:
205
+
206
+ # IntelliJ
207
+ out/
208
+
209
+ # mpeltonen/sbt-idea plugin
210
+ .idea_modules/
211
+
212
+ # JIRA plugin
213
+ atlassian-ide-plugin.xml
214
+
215
+ # Cursive Clojure plugin
216
+ .idea/replstate.xml
217
+
218
+ # Crashlytics plugin (for Android Studio and IntelliJ)
219
+ com_crashlytics_export_strings.xml
220
+ crashlytics.properties
221
+ crashlytics-build.properties
222
+ fabric.properties
TextDetection/LICENSE ADDED
@@ -0,0 +1,661 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ GNU AFFERO GENERAL PUBLIC LICENSE
2
+ Version 3, 19 November 2007
3
+
4
+ Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
5
+ Everyone is permitted to copy and distribute verbatim copies
6
+ of this license document, but changing it is not allowed.
7
+
8
+ Preamble
9
+
10
+ The GNU Affero General Public License is a free, copyleft license for
11
+ software and other kinds of works, specifically designed to ensure
12
+ cooperation with the community in the case of network server software.
13
+
14
+ The licenses for most software and other practical works are designed
15
+ to take away your freedom to share and change the works. By contrast,
16
+ our General Public Licenses are intended to guarantee your freedom to
17
+ share and change all versions of a program--to make sure it remains free
18
+ software for all its users.
19
+
20
+ When we speak of free software, we are referring to freedom, not
21
+ price. Our General Public Licenses are designed to make sure that you
22
+ have the freedom to distribute copies of free software (and charge for
23
+ them if you wish), that you receive source code or can get it if you
24
+ want it, that you can change the software or use pieces of it in new
25
+ free programs, and that you know you can do these things.
26
+
27
+ Developers that use our General Public Licenses protect your rights
28
+ with two steps: (1) assert copyright on the software, and (2) offer
29
+ you this License which gives you legal permission to copy, distribute
30
+ and/or modify the software.
31
+
32
+ A secondary benefit of defending all users' freedom is that
33
+ improvements made in alternate versions of the program, if they
34
+ receive widespread use, become available for other developers to
35
+ incorporate. Many developers of free software are heartened and
36
+ encouraged by the resulting cooperation. However, in the case of
37
+ software used on network servers, this result may fail to come about.
38
+ The GNU General Public License permits making a modified version and
39
+ letting the public access it on a server without ever releasing its
40
+ source code to the public.
41
+
42
+ The GNU Affero General Public License is designed specifically to
43
+ ensure that, in such cases, the modified source code becomes available
44
+ to the community. It requires the operator of a network server to
45
+ provide the source code of the modified version running there to the
46
+ users of that server. Therefore, public use of a modified version, on
47
+ a publicly accessible server, gives the public access to the source
48
+ code of the modified version.
49
+
50
+ An older license, called the Affero General Public License and
51
+ published by Affero, was designed to accomplish similar goals. This is
52
+ a different license, not a version of the Affero GPL, but Affero has
53
+ released a new version of the Affero GPL which permits relicensing under
54
+ this license.
55
+
56
+ The precise terms and conditions for copying, distribution and
57
+ modification follow.
58
+
59
+ TERMS AND CONDITIONS
60
+
61
+ 0. Definitions.
62
+
63
+ "This License" refers to version 3 of the GNU Affero General Public License.
64
+
65
+ "Copyright" also means copyright-like laws that apply to other kinds of
66
+ works, such as semiconductor masks.
67
+
68
+ "The Program" refers to any copyrightable work licensed under this
69
+ License. Each licensee is addressed as "you". "Licensees" and
70
+ "recipients" may be individuals or organizations.
71
+
72
+ To "modify" a work means to copy from or adapt all or part of the work
73
+ in a fashion requiring copyright permission, other than the making of an
74
+ exact copy. The resulting work is called a "modified version" of the
75
+ earlier work or a work "based on" the earlier work.
76
+
77
+ A "covered work" means either the unmodified Program or a work based
78
+ on the Program.
79
+
80
+ To "propagate" a work means to do anything with it that, without
81
+ permission, would make you directly or secondarily liable for
82
+ infringement under applicable copyright law, except executing it on a
83
+ computer or modifying a private copy. Propagation includes copying,
84
+ distribution (with or without modification), making available to the
85
+ public, and in some countries other activities as well.
86
+
87
+ To "convey" a work means any kind of propagation that enables other
88
+ parties to make or receive copies. Mere interaction with a user through
89
+ a computer network, with no transfer of a copy, is not conveying.
90
+
91
+ An interactive user interface displays "Appropriate Legal Notices"
92
+ to the extent that it includes a convenient and prominently visible
93
+ feature that (1) displays an appropriate copyright notice, and (2)
94
+ tells the user that there is no warranty for the work (except to the
95
+ extent that warranties are provided), that licensees may convey the
96
+ work under this License, and how to view a copy of this License. If
97
+ the interface presents a list of user commands or options, such as a
98
+ menu, a prominent item in the list meets this criterion.
99
+
100
+ 1. Source Code.
101
+
102
+ The "source code" for a work means the preferred form of the work
103
+ for making modifications to it. "Object code" means any non-source
104
+ form of a work.
105
+
106
+ A "Standard Interface" means an interface that either is an official
107
+ standard defined by a recognized standards body, or, in the case of
108
+ interfaces specified for a particular programming language, one that
109
+ is widely used among developers working in that language.
110
+
111
+ The "System Libraries" of an executable work include anything, other
112
+ than the work as a whole, that (a) is included in the normal form of
113
+ packaging a Major Component, but which is not part of that Major
114
+ Component, and (b) serves only to enable use of the work with that
115
+ Major Component, or to implement a Standard Interface for which an
116
+ implementation is available to the public in source code form. A
117
+ "Major Component", in this context, means a major essential component
118
+ (kernel, window system, and so on) of the specific operating system
119
+ (if any) on which the executable work runs, or a compiler used to
120
+ produce the work, or an object code interpreter used to run it.
121
+
122
+ The "Corresponding Source" for a work in object code form means all
123
+ the source code needed to generate, install, and (for an executable
124
+ work) run the object code and to modify the work, including scripts to
125
+ control those activities. However, it does not include the work's
126
+ System Libraries, or general-purpose tools or generally available free
127
+ programs which are used unmodified in performing those activities but
128
+ which are not part of the work. For example, Corresponding Source
129
+ includes interface definition files associated with source files for
130
+ the work, and the source code for shared libraries and dynamically
131
+ linked subprograms that the work is specifically designed to require,
132
+ such as by intimate data communication or control flow between those
133
+ subprograms and other parts of the work.
134
+
135
+ The Corresponding Source need not include anything that users
136
+ can regenerate automatically from other parts of the Corresponding
137
+ Source.
138
+
139
+ The Corresponding Source for a work in source code form is that
140
+ same work.
141
+
142
+ 2. Basic Permissions.
143
+
144
+ All rights granted under this License are granted for the term of
145
+ copyright on the Program, and are irrevocable provided the stated
146
+ conditions are met. This License explicitly affirms your unlimited
147
+ permission to run the unmodified Program. The output from running a
148
+ covered work is covered by this License only if the output, given its
149
+ content, constitutes a covered work. This License acknowledges your
150
+ rights of fair use or other equivalent, as provided by copyright law.
151
+
152
+ You may make, run and propagate covered works that you do not
153
+ convey, without conditions so long as your license otherwise remains
154
+ in force. You may convey covered works to others for the sole purpose
155
+ of having them make modifications exclusively for you, or provide you
156
+ with facilities for running those works, provided that you comply with
157
+ the terms of this License in conveying all material for which you do
158
+ not control copyright. Those thus making or running the covered works
159
+ for you must do so exclusively on your behalf, under your direction
160
+ and control, on terms that prohibit them from making any copies of
161
+ your copyrighted material outside their relationship with you.
162
+
163
+ Conveying under any other circumstances is permitted solely under
164
+ the conditions stated below. Sublicensing is not allowed; section 10
165
+ makes it unnecessary.
166
+
167
+ 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
168
+
169
+ No covered work shall be deemed part of an effective technological
170
+ measure under any applicable law fulfilling obligations under article
171
+ 11 of the WIPO copyright treaty adopted on 20 December 1996, or
172
+ similar laws prohibiting or restricting circumvention of such
173
+ measures.
174
+
175
+ When you convey a covered work, you waive any legal power to forbid
176
+ circumvention of technological measures to the extent such circumvention
177
+ is effected by exercising rights under this License with respect to
178
+ the covered work, and you disclaim any intention to limit operation or
179
+ modification of the work as a means of enforcing, against the work's
180
+ users, your or third parties' legal rights to forbid circumvention of
181
+ technological measures.
182
+
183
+ 4. Conveying Verbatim Copies.
184
+
185
+ You may convey verbatim copies of the Program's source code as you
186
+ receive it, in any medium, provided that you conspicuously and
187
+ appropriately publish on each copy an appropriate copyright notice;
188
+ keep intact all notices stating that this License and any
189
+ non-permissive terms added in accord with section 7 apply to the code;
190
+ keep intact all notices of the absence of any warranty; and give all
191
+ recipients a copy of this License along with the Program.
192
+
193
+ You may charge any price or no price for each copy that you convey,
194
+ and you may offer support or warranty protection for a fee.
195
+
196
+ 5. Conveying Modified Source Versions.
197
+
198
+ You may convey a work based on the Program, or the modifications to
199
+ produce it from the Program, in the form of source code under the
200
+ terms of section 4, provided that you also meet all of these conditions:
201
+
202
+ a) The work must carry prominent notices stating that you modified
203
+ it, and giving a relevant date.
204
+
205
+ b) The work must carry prominent notices stating that it is
206
+ released under this License and any conditions added under section
207
+ 7. This requirement modifies the requirement in section 4 to
208
+ "keep intact all notices".
209
+
210
+ c) You must license the entire work, as a whole, under this
211
+ License to anyone who comes into possession of a copy. This
212
+ License will therefore apply, along with any applicable section 7
213
+ additional terms, to the whole of the work, and all its parts,
214
+ regardless of how they are packaged. This License gives no
215
+ permission to license the work in any other way, but it does not
216
+ invalidate such permission if you have separately received it.
217
+
218
+ d) If the work has interactive user interfaces, each must display
219
+ Appropriate Legal Notices; however, if the Program has interactive
220
+ interfaces that do not display Appropriate Legal Notices, your
221
+ work need not make them do so.
222
+
223
+ A compilation of a covered work with other separate and independent
224
+ works, which are not by their nature extensions of the covered work,
225
+ and which are not combined with it such as to form a larger program,
226
+ in or on a volume of a storage or distribution medium, is called an
227
+ "aggregate" if the compilation and its resulting copyright are not
228
+ used to limit the access or legal rights of the compilation's users
229
+ beyond what the individual works permit. Inclusion of a covered work
230
+ in an aggregate does not cause this License to apply to the other
231
+ parts of the aggregate.
232
+
233
+ 6. Conveying Non-Source Forms.
234
+
235
+ You may convey a covered work in object code form under the terms
236
+ of sections 4 and 5, provided that you also convey the
237
+ machine-readable Corresponding Source under the terms of this License,
238
+ in one of these ways:
239
+
240
+ a) Convey the object code in, or embodied in, a physical product
241
+ (including a physical distribution medium), accompanied by the
242
+ Corresponding Source fixed on a durable physical medium
243
+ customarily used for software interchange.
244
+
245
+ b) Convey the object code in, or embodied in, a physical product
246
+ (including a physical distribution medium), accompanied by a
247
+ written offer, valid for at least three years and valid for as
248
+ long as you offer spare parts or customer support for that product
249
+ model, to give anyone who possesses the object code either (1) a
250
+ copy of the Corresponding Source for all the software in the
251
+ product that is covered by this License, on a durable physical
252
+ medium customarily used for software interchange, for a price no
253
+ more than your reasonable cost of physically performing this
254
+ conveying of source, or (2) access to copy the
255
+ Corresponding Source from a network server at no charge.
256
+
257
+ c) Convey individual copies of the object code with a copy of the
258
+ written offer to provide the Corresponding Source. This
259
+ alternative is allowed only occasionally and noncommercially, and
260
+ only if you received the object code with such an offer, in accord
261
+ with subsection 6b.
262
+
263
+ d) Convey the object code by offering access from a designated
264
+ place (gratis or for a charge), and offer equivalent access to the
265
+ Corresponding Source in the same way through the same place at no
266
+ further charge. You need not require recipients to copy the
267
+ Corresponding Source along with the object code. If the place to
268
+ copy the object code is a network server, the Corresponding Source
269
+ may be on a different server (operated by you or a third party)
270
+ that supports equivalent copying facilities, provided you maintain
271
+ clear directions next to the object code saying where to find the
272
+ Corresponding Source. Regardless of what server hosts the
273
+ Corresponding Source, you remain obligated to ensure that it is
274
+ available for as long as needed to satisfy these requirements.
275
+
276
+ e) Convey the object code using peer-to-peer transmission, provided
277
+ you inform other peers where the object code and Corresponding
278
+ Source of the work are being offered to the general public at no
279
+ charge under subsection 6d.
280
+
281
+ A separable portion of the object code, whose source code is excluded
282
+ from the Corresponding Source as a System Library, need not be
283
+ included in conveying the object code work.
284
+
285
+ A "User Product" is either (1) a "consumer product", which means any
286
+ tangible personal property which is normally used for personal, family,
287
+ or household purposes, or (2) anything designed or sold for incorporation
288
+ into a dwelling. In determining whether a product is a consumer product,
289
+ doubtful cases shall be resolved in favor of coverage. For a particular
290
+ product received by a particular user, "normally used" refers to a
291
+ typical or common use of that class of product, regardless of the status
292
+ of the particular user or of the way in which the particular user
293
+ actually uses, or expects or is expected to use, the product. A product
294
+ is a consumer product regardless of whether the product has substantial
295
+ commercial, industrial or non-consumer uses, unless such uses represent
296
+ the only significant mode of use of the product.
297
+
298
+ "Installation Information" for a User Product means any methods,
299
+ procedures, authorization keys, or other information required to install
300
+ and execute modified versions of a covered work in that User Product from
301
+ a modified version of its Corresponding Source. The information must
302
+ suffice to ensure that the continued functioning of the modified object
303
+ code is in no case prevented or interfered with solely because
304
+ modification has been made.
305
+
306
+ If you convey an object code work under this section in, or with, or
307
+ specifically for use in, a User Product, and the conveying occurs as
308
+ part of a transaction in which the right of possession and use of the
309
+ User Product is transferred to the recipient in perpetuity or for a
310
+ fixed term (regardless of how the transaction is characterized), the
311
+ Corresponding Source conveyed under this section must be accompanied
312
+ by the Installation Information. But this requirement does not apply
313
+ if neither you nor any third party retains the ability to install
314
+ modified object code on the User Product (for example, the work has
315
+ been installed in ROM).
316
+
317
+ The requirement to provide Installation Information does not include a
318
+ requirement to continue to provide support service, warranty, or updates
319
+ for a work that has been modified or installed by the recipient, or for
320
+ the User Product in which it has been modified or installed. Access to a
321
+ network may be denied when the modification itself materially and
322
+ adversely affects the operation of the network or violates the rules and
323
+ protocols for communication across the network.
324
+
325
+ Corresponding Source conveyed, and Installation Information provided,
326
+ in accord with this section must be in a format that is publicly
327
+ documented (and with an implementation available to the public in
328
+ source code form), and must require no special password or key for
329
+ unpacking, reading or copying.
330
+
331
+ 7. Additional Terms.
332
+
333
+ "Additional permissions" are terms that supplement the terms of this
334
+ License by making exceptions from one or more of its conditions.
335
+ Additional permissions that are applicable to the entire Program shall
336
+ be treated as though they were included in this License, to the extent
337
+ that they are valid under applicable law. If additional permissions
338
+ apply only to part of the Program, that part may be used separately
339
+ under those permissions, but the entire Program remains governed by
340
+ this License without regard to the additional permissions.
341
+
342
+ When you convey a copy of a covered work, you may at your option
343
+ remove any additional permissions from that copy, or from any part of
344
+ it. (Additional permissions may be written to require their own
345
+ removal in certain cases when you modify the work.) You may place
346
+ additional permissions on material, added by you to a covered work,
347
+ for which you have or can give appropriate copyright permission.
348
+
349
+ Notwithstanding any other provision of this License, for material you
350
+ add to a covered work, you may (if authorized by the copyright holders of
351
+ that material) supplement the terms of this License with terms:
352
+
353
+ a) Disclaiming warranty or limiting liability differently from the
354
+ terms of sections 15 and 16 of this License; or
355
+
356
+ b) Requiring preservation of specified reasonable legal notices or
357
+ author attributions in that material or in the Appropriate Legal
358
+ Notices displayed by works containing it; or
359
+
360
+ c) Prohibiting misrepresentation of the origin of that material, or
361
+ requiring that modified versions of such material be marked in
362
+ reasonable ways as different from the original version; or
363
+
364
+ d) Limiting the use for publicity purposes of names of licensors or
365
+ authors of the material; or
366
+
367
+ e) Declining to grant rights under trademark law for use of some
368
+ trade names, trademarks, or service marks; or
369
+
370
+ f) Requiring indemnification of licensors and authors of that
371
+ material by anyone who conveys the material (or modified versions of
372
+ it) with contractual assumptions of liability to the recipient, for
373
+ any liability that these contractual assumptions directly impose on
374
+ those licensors and authors.
375
+
376
+ All other non-permissive additional terms are considered "further
377
+ restrictions" within the meaning of section 10. If the Program as you
378
+ received it, or any part of it, contains a notice stating that it is
379
+ governed by this License along with a term that is a further
380
+ restriction, you may remove that term. If a license document contains
381
+ a further restriction but permits relicensing or conveying under this
382
+ License, you may add to a covered work material governed by the terms
383
+ of that license document, provided that the further restriction does
384
+ not survive such relicensing or conveying.
385
+
386
+ If you add terms to a covered work in accord with this section, you
387
+ must place, in the relevant source files, a statement of the
388
+ additional terms that apply to those files, or a notice indicating
389
+ where to find the applicable terms.
390
+
391
+ Additional terms, permissive or non-permissive, may be stated in the
392
+ form of a separately written license, or stated as exceptions;
393
+ the above requirements apply either way.
394
+
395
+ 8. Termination.
396
+
397
+ You may not propagate or modify a covered work except as expressly
398
+ provided under this License. Any attempt otherwise to propagate or
399
+ modify it is void, and will automatically terminate your rights under
400
+ this License (including any patent licenses granted under the third
401
+ paragraph of section 11).
402
+
403
+ However, if you cease all violation of this License, then your
404
+ license from a particular copyright holder is reinstated (a)
405
+ provisionally, unless and until the copyright holder explicitly and
406
+ finally terminates your license, and (b) permanently, if the copyright
407
+ holder fails to notify you of the violation by some reasonable means
408
+ prior to 60 days after the cessation.
409
+
410
+ Moreover, your license from a particular copyright holder is
411
+ reinstated permanently if the copyright holder notifies you of the
412
+ violation by some reasonable means, this is the first time you have
413
+ received notice of violation of this License (for any work) from that
414
+ copyright holder, and you cure the violation prior to 30 days after
415
+ your receipt of the notice.
416
+
417
+ Termination of your rights under this section does not terminate the
418
+ licenses of parties who have received copies or rights from you under
419
+ this License. If your rights have been terminated and not permanently
420
+ reinstated, you do not qualify to receive new licenses for the same
421
+ material under section 10.
422
+
423
+ 9. Acceptance Not Required for Having Copies.
424
+
425
+ You are not required to accept this License in order to receive or
426
+ run a copy of the Program. Ancillary propagation of a covered work
427
+ occurring solely as a consequence of using peer-to-peer transmission
428
+ to receive a copy likewise does not require acceptance. However,
429
+ nothing other than this License grants you permission to propagate or
430
+ modify any covered work. These actions infringe copyright if you do
431
+ not accept this License. Therefore, by modifying or propagating a
432
+ covered work, you indicate your acceptance of this License to do so.
433
+
434
+ 10. Automatic Licensing of Downstream Recipients.
435
+
436
+ Each time you convey a covered work, the recipient automatically
437
+ receives a license from the original licensors, to run, modify and
438
+ propagate that work, subject to this License. You are not responsible
439
+ for enforcing compliance by third parties with this License.
440
+
441
+ An "entity transaction" is a transaction transferring control of an
442
+ organization, or substantially all assets of one, or subdividing an
443
+ organization, or merging organizations. If propagation of a covered
444
+ work results from an entity transaction, each party to that
445
+ transaction who receives a copy of the work also receives whatever
446
+ licenses to the work the party's predecessor in interest had or could
447
+ give under the previous paragraph, plus a right to possession of the
448
+ Corresponding Source of the work from the predecessor in interest, if
449
+ the predecessor has it or can get it with reasonable efforts.
450
+
451
+ You may not impose any further restrictions on the exercise of the
452
+ rights granted or affirmed under this License. For example, you may
453
+ not impose a license fee, royalty, or other charge for exercise of
454
+ rights granted under this License, and you may not initiate litigation
455
+ (including a cross-claim or counterclaim in a lawsuit) alleging that
456
+ any patent claim is infringed by making, using, selling, offering for
457
+ sale, or importing the Program or any portion of it.
458
+
459
+ 11. Patents.
460
+
461
+ A "contributor" is a copyright holder who authorizes use under this
462
+ License of the Program or a work on which the Program is based. The
463
+ work thus licensed is called the contributor's "contributor version".
464
+
465
+ A contributor's "essential patent claims" are all patent claims
466
+ owned or controlled by the contributor, whether already acquired or
467
+ hereafter acquired, that would be infringed by some manner, permitted
468
+ by this License, of making, using, or selling its contributor version,
469
+ but do not include claims that would be infringed only as a
470
+ consequence of further modification of the contributor version. For
471
+ purposes of this definition, "control" includes the right to grant
472
+ patent sublicenses in a manner consistent with the requirements of
473
+ this License.
474
+
475
+ Each contributor grants you a non-exclusive, worldwide, royalty-free
476
+ patent license under the contributor's essential patent claims, to
477
+ make, use, sell, offer for sale, import and otherwise run, modify and
478
+ propagate the contents of its contributor version.
479
+
480
+ In the following three paragraphs, a "patent license" is any express
481
+ agreement or commitment, however denominated, not to enforce a patent
482
+ (such as an express permission to practice a patent or covenant not to
483
+ sue for patent infringement). To "grant" such a patent license to a
484
+ party means to make such an agreement or commitment not to enforce a
485
+ patent against the party.
486
+
487
+ If you convey a covered work, knowingly relying on a patent license,
488
+ and the Corresponding Source of the work is not available for anyone
489
+ to copy, free of charge and under the terms of this License, through a
490
+ publicly available network server or other readily accessible means,
491
+ then you must either (1) cause the Corresponding Source to be so
492
+ available, or (2) arrange to deprive yourself of the benefit of the
493
+ patent license for this particular work, or (3) arrange, in a manner
494
+ consistent with the requirements of this License, to extend the patent
495
+ license to downstream recipients. "Knowingly relying" means you have
496
+ actual knowledge that, but for the patent license, your conveying the
497
+ covered work in a country, or your recipient's use of the covered work
498
+ in a country, would infringe one or more identifiable patents in that
499
+ country that you have reason to believe are valid.
500
+
501
+ If, pursuant to or in connection with a single transaction or
502
+ arrangement, you convey, or propagate by procuring conveyance of, a
503
+ covered work, and grant a patent license to some of the parties
504
+ receiving the covered work authorizing them to use, propagate, modify
505
+ or convey a specific copy of the covered work, then the patent license
506
+ you grant is automatically extended to all recipients of the covered
507
+ work and works based on it.
508
+
509
+ A patent license is "discriminatory" if it does not include within
510
+ the scope of its coverage, prohibits the exercise of, or is
511
+ conditioned on the non-exercise of one or more of the rights that are
512
+ specifically granted under this License. You may not convey a covered
513
+ work if you are a party to an arrangement with a third party that is
514
+ in the business of distributing software, under which you make payment
515
+ to the third party based on the extent of your activity of conveying
516
+ the work, and under which the third party grants, to any of the
517
+ parties who would receive the covered work from you, a discriminatory
518
+ patent license (a) in connection with copies of the covered work
519
+ conveyed by you (or copies made from those copies), or (b) primarily
520
+ for and in connection with specific products or compilations that
521
+ contain the covered work, unless you entered into that arrangement,
522
+ or that patent license was granted, prior to 28 March 2007.
523
+
524
+ Nothing in this License shall be construed as excluding or limiting
525
+ any implied license or other defenses to infringement that may
526
+ otherwise be available to you under applicable patent law.
527
+
528
+ 12. No Surrender of Others' Freedom.
529
+
530
+ If conditions are imposed on you (whether by court order, agreement or
531
+ otherwise) that contradict the conditions of this License, they do not
532
+ excuse you from the conditions of this License. If you cannot convey a
533
+ covered work so as to satisfy simultaneously your obligations under this
534
+ License and any other pertinent obligations, then as a consequence you may
535
+ not convey it at all. For example, if you agree to terms that obligate you
536
+ to collect a royalty for further conveying from those to whom you convey
537
+ the Program, the only way you could satisfy both those terms and this
538
+ License would be to refrain entirely from conveying the Program.
539
+
540
+ 13. Remote Network Interaction; Use with the GNU General Public License.
541
+
542
+ Notwithstanding any other provision of this License, if you modify the
543
+ Program, your modified version must prominently offer all users
544
+ interacting with it remotely through a computer network (if your version
545
+ supports such interaction) an opportunity to receive the Corresponding
546
+ Source of your version by providing access to the Corresponding Source
547
+ from a network server at no charge, through some standard or customary
548
+ means of facilitating copying of software. This Corresponding Source
549
+ shall include the Corresponding Source for any work covered by version 3
550
+ of the GNU General Public License that is incorporated pursuant to the
551
+ following paragraph.
552
+
553
+ Notwithstanding any other provision of this License, you have
554
+ permission to link or combine any covered work with a work licensed
555
+ under version 3 of the GNU General Public License into a single
556
+ combined work, and to convey the resulting work. The terms of this
557
+ License will continue to apply to the part which is the covered work,
558
+ but the work with which it is combined will remain governed by version
559
+ 3 of the GNU General Public License.
560
+
561
+ 14. Revised Versions of this License.
562
+
563
+ The Free Software Foundation may publish revised and/or new versions of
564
+ the GNU Affero General Public License from time to time. Such new versions
565
+ will be similar in spirit to the present version, but may differ in detail to
566
+ address new problems or concerns.
567
+
568
+ Each version is given a distinguishing version number. If the
569
+ Program specifies that a certain numbered version of the GNU Affero General
570
+ Public License "or any later version" applies to it, you have the
571
+ option of following the terms and conditions either of that numbered
572
+ version or of any later version published by the Free Software
573
+ Foundation. If the Program does not specify a version number of the
574
+ GNU Affero General Public License, you may choose any version ever published
575
+ by the Free Software Foundation.
576
+
577
+ If the Program specifies that a proxy can decide which future
578
+ versions of the GNU Affero General Public License can be used, that proxy's
579
+ public statement of acceptance of a version permanently authorizes you
580
+ to choose that version for the Program.
581
+
582
+ Later license versions may give you additional or different
583
+ permissions. However, no additional obligations are imposed on any
584
+ author or copyright holder as a result of your choosing to follow a
585
+ later version.
586
+
587
+ 15. Disclaimer of Warranty.
588
+
589
+ THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
590
+ APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
591
+ HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
592
+ OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
593
+ THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
594
+ PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
595
+ IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
596
+ ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
597
+
598
+ 16. Limitation of Liability.
599
+
600
+ IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
601
+ WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
602
+ THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
603
+ GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
604
+ USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
605
+ DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
606
+ PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
607
+ EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
608
+ SUCH DAMAGES.
609
+
610
+ 17. Interpretation of Sections 15 and 16.
611
+
612
+ If the disclaimer of warranty and limitation of liability provided
613
+ above cannot be given local legal effect according to their terms,
614
+ reviewing courts shall apply local law that most closely approximates
615
+ an absolute waiver of all civil liability in connection with the
616
+ Program, unless a warranty or assumption of liability accompanies a
617
+ copy of the Program in return for a fee.
618
+
619
+ END OF TERMS AND CONDITIONS
620
+
621
+ How to Apply These Terms to Your New Programs
622
+
623
+ If you develop a new program, and you want it to be of the greatest
624
+ possible use to the public, the best way to achieve this is to make it
625
+ free software which everyone can redistribute and change under these terms.
626
+
627
+ To do so, attach the following notices to the program. It is safest
628
+ to attach them to the start of each source file to most effectively
629
+ state the exclusion of warranty; and each file should have at least
630
+ the "copyright" line and a pointer to where the full notice is found.
631
+
632
+ <one line to give the program's name and a brief idea of what it does.>
633
+ Copyright (C) <year> <name of author>
634
+
635
+ This program is free software: you can redistribute it and/or modify
636
+ it under the terms of the GNU Affero General Public License as published by
637
+ the Free Software Foundation, either version 3 of the License, or
638
+ (at your option) any later version.
639
+
640
+ This program is distributed in the hope that it will be useful,
641
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
642
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
643
+ GNU Affero General Public License for more details.
644
+
645
+ You should have received a copy of the GNU Affero General Public License
646
+ along with this program. If not, see <https://www.gnu.org/licenses/>.
647
+
648
+ Also add information on how to contact you by electronic and paper mail.
649
+
650
+ If your software can interact with users remotely through a computer
651
+ network, you should also make sure that it provides a way for users to
652
+ get its source. For example, if your program is a web application, its
653
+ interface could display a "Source" link that leads users to an archive
654
+ of the code. There are many ways you could offer source, and different
655
+ solutions will be better for different programs; see section 13 for the
656
+ specific requirements.
657
+
658
+ You should also get your employer (if you work as a programmer) or school,
659
+ if any, to sign a "copyright disclaimer" for the program, if necessary.
660
+ For more information on this, and how to apply and follow the GNU AGPL, see
661
+ <https://www.gnu.org/licenses/>.
TextDetection/__pycache__/export.cpython-310.pyc ADDED
Binary file (31.2 kB). View file
 
TextDetection/__pycache__/export.cpython-39.pyc ADDED
Binary file (31.1 kB). View file
 
TextDetection/benchmarks.py ADDED
@@ -0,0 +1,174 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 πŸš€ by Ultralytics, AGPL-3.0 license
2
+ """
3
+ Run YOLOv5 benchmarks on all supported export formats
4
+
5
+ Format | `export.py --include` | Model
6
+ --- | --- | ---
7
+ PyTorch | - | yolov5s.pt
8
+ TorchScript | `torchscript` | yolov5s.torchscript
9
+ ONNX | `onnx` | yolov5s.onnx
10
+ OpenVINO | `openvino` | yolov5s_openvino_model/
11
+ TensorRT | `engine` | yolov5s.engine
12
+ CoreML | `coreml` | yolov5s.mlmodel
13
+ TensorFlow SavedModel | `saved_model` | yolov5s_saved_model/
14
+ TensorFlow GraphDef | `pb` | yolov5s.pb
15
+ TensorFlow Lite | `tflite` | yolov5s.tflite
16
+ TensorFlow Edge TPU | `edgetpu` | yolov5s_edgetpu.tflite
17
+ TensorFlow.js | `tfjs` | yolov5s_web_model/
18
+
19
+ Requirements:
20
+ $ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime openvino-dev tensorflow-cpu # CPU
21
+ $ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime-gpu openvino-dev tensorflow # GPU
22
+ $ pip install -U nvidia-tensorrt --index-url https://pypi.ngc.nvidia.com # TensorRT
23
+
24
+ Usage:
25
+ $ python benchmarks.py --weights yolov5s.pt --img 640
26
+ """
27
+
28
+ import argparse
29
+ import platform
30
+ import sys
31
+ import time
32
+ from pathlib import Path
33
+
34
+ import pandas as pd
35
+
36
+ FILE = Path(__file__).resolve()
37
+ ROOT = FILE.parents[0] # YOLOv5 root directory
38
+ if str(ROOT) not in sys.path:
39
+ sys.path.append(str(ROOT)) # add ROOT to PATH
40
+ # ROOT = ROOT.relative_to(Path.cwd()) # relative
41
+
42
+ import export
43
+ from models.experimental import attempt_load
44
+ from models.yolo import SegmentationModel
45
+ from segment.val import run as val_seg
46
+ from utils import notebook_init
47
+ from utils.general import LOGGER, check_yaml, file_size, print_args
48
+ from utils.torch_utils import select_device
49
+ from val import run as val_det
50
+
51
+
52
+ def run(
53
+ weights=ROOT / 'yolov5s.pt', # weights path
54
+ imgsz=640, # inference size (pixels)
55
+ batch_size=1, # batch size
56
+ data=ROOT / 'data/coco128.yaml', # dataset.yaml path
57
+ device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
58
+ half=False, # use FP16 half-precision inference
59
+ test=False, # test exports only
60
+ pt_only=False, # test PyTorch only
61
+ hard_fail=False, # throw error on benchmark failure
62
+ ):
63
+ y, t = [], time.time()
64
+ device = select_device(device)
65
+ model_type = type(attempt_load(weights, fuse=False)) # DetectionModel, SegmentationModel, etc.
66
+ for i, (name, f, suffix, cpu, gpu) in export.export_formats().iterrows(): # index, (name, file, suffix, CPU, GPU)
67
+ try:
68
+ assert i not in (9, 10), 'inference not supported' # Edge TPU and TF.js are unsupported
69
+ assert i != 5 or platform.system() == 'Darwin', 'inference only supported on macOS>=10.13' # CoreML
70
+ if 'cpu' in device.type:
71
+ assert cpu, 'inference not supported on CPU'
72
+ if 'cuda' in device.type:
73
+ assert gpu, 'inference not supported on GPU'
74
+
75
+ # Export
76
+ if f == '-':
77
+ w = weights # PyTorch format
78
+ else:
79
+ w = export.run(weights=weights,
80
+ imgsz=[imgsz],
81
+ include=[f],
82
+ batch_size=batch_size,
83
+ device=device,
84
+ half=half)[-1] # all others
85
+ assert suffix in str(w), 'export failed'
86
+
87
+ # Validate
88
+ if model_type == SegmentationModel:
89
+ result = val_seg(data, w, batch_size, imgsz, plots=False, device=device, task='speed', half=half)
90
+ metric = result[0][7] # (box(p, r, map50, map), mask(p, r, map50, map), *loss(box, obj, cls))
91
+ else: # DetectionModel:
92
+ result = val_det(data, w, batch_size, imgsz, plots=False, device=device, task='speed', half=half)
93
+ metric = result[0][3] # (p, r, map50, map, *loss(box, obj, cls))
94
+ speed = result[2][1] # times (preprocess, inference, postprocess)
95
+ y.append([name, round(file_size(w), 1), round(metric, 4), round(speed, 2)]) # MB, mAP, t_inference
96
+ except Exception as e:
97
+ if hard_fail:
98
+ assert type(e) is AssertionError, f'Benchmark --hard-fail for {name}: {e}'
99
+ LOGGER.warning(f'WARNING ⚠️ Benchmark failure for {name}: {e}')
100
+ y.append([name, None, None, None]) # mAP, t_inference
101
+ if pt_only and i == 0:
102
+ break # break after PyTorch
103
+
104
+ # Print results
105
+ LOGGER.info('\n')
106
+ parse_opt()
107
+ notebook_init() # print system info
108
+ c = ['Format', 'Size (MB)', 'mAP50-95', 'Inference time (ms)'] if map else ['Format', 'Export', '', '']
109
+ py = pd.DataFrame(y, columns=c)
110
+ LOGGER.info(f'\nBenchmarks complete ({time.time() - t:.2f}s)')
111
+ LOGGER.info(str(py if map else py.iloc[:, :2]))
112
+ if hard_fail and isinstance(hard_fail, str):
113
+ metrics = py['mAP50-95'].array # values to compare to floor
114
+ floor = eval(hard_fail) # minimum metric floor to pass, i.e. = 0.29 mAP for YOLOv5n
115
+ assert all(x > floor for x in metrics if pd.notna(x)), f'HARD FAIL: mAP50-95 < floor {floor}'
116
+ return py
117
+
118
+
119
+ def test(
120
+ weights=ROOT / 'yolov5s.pt', # weights path
121
+ imgsz=640, # inference size (pixels)
122
+ batch_size=1, # batch size
123
+ data=ROOT / 'data/coco128.yaml', # dataset.yaml path
124
+ device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
125
+ half=False, # use FP16 half-precision inference
126
+ test=False, # test exports only
127
+ pt_only=False, # test PyTorch only
128
+ hard_fail=False, # throw error on benchmark failure
129
+ ):
130
+ y, t = [], time.time()
131
+ device = select_device(device)
132
+ for i, (name, f, suffix, gpu) in export.export_formats().iterrows(): # index, (name, file, suffix, gpu-capable)
133
+ try:
134
+ w = weights if f == '-' else \
135
+ export.run(weights=weights, imgsz=[imgsz], include=[f], device=device, half=half)[-1] # weights
136
+ assert suffix in str(w), 'export failed'
137
+ y.append([name, True])
138
+ except Exception:
139
+ y.append([name, False]) # mAP, t_inference
140
+
141
+ # Print results
142
+ LOGGER.info('\n')
143
+ parse_opt()
144
+ notebook_init() # print system info
145
+ py = pd.DataFrame(y, columns=['Format', 'Export'])
146
+ LOGGER.info(f'\nExports complete ({time.time() - t:.2f}s)')
147
+ LOGGER.info(str(py))
148
+ return py
149
+
150
+
151
+ def parse_opt():
152
+ parser = argparse.ArgumentParser()
153
+ parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s.pt', help='weights path')
154
+ parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='inference size (pixels)')
155
+ parser.add_argument('--batch-size', type=int, default=1, help='batch size')
156
+ parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')
157
+ parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
158
+ parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
159
+ parser.add_argument('--test', action='store_true', help='test exports only')
160
+ parser.add_argument('--pt-only', action='store_true', help='test PyTorch only')
161
+ parser.add_argument('--hard-fail', nargs='?', const=True, default=False, help='Exception on error or < min metric')
162
+ opt = parser.parse_args()
163
+ opt.data = check_yaml(opt.data) # check YAML
164
+ print_args(vars(opt))
165
+ return opt
166
+
167
+
168
+ def main(opt):
169
+ test(**vars(opt)) if opt.test else run(**vars(opt))
170
+
171
+
172
+ if __name__ == '__main__':
173
+ opt = parse_opt()
174
+ main(opt)
TextDetection/classify/predict.py ADDED
@@ -0,0 +1,226 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 πŸš€ by Ultralytics, AGPL-3.0 license
2
+ """
3
+ Run YOLOv5 classification inference on images, videos, directories, globs, YouTube, webcam, streams, etc.
4
+
5
+ Usage - sources:
6
+ $ python classify/predict.py --weights yolov5s-cls.pt --source 0 # webcam
7
+ img.jpg # image
8
+ vid.mp4 # video
9
+ screen # screenshot
10
+ path/ # directory
11
+ list.txt # list of images
12
+ list.streams # list of streams
13
+ 'path/*.jpg' # glob
14
+ 'https://youtu.be/Zgi9g1ksQHc' # YouTube
15
+ 'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
16
+
17
+ Usage - formats:
18
+ $ python classify/predict.py --weights yolov5s-cls.pt # PyTorch
19
+ yolov5s-cls.torchscript # TorchScript
20
+ yolov5s-cls.onnx # ONNX Runtime or OpenCV DNN with --dnn
21
+ yolov5s-cls_openvino_model # OpenVINO
22
+ yolov5s-cls.engine # TensorRT
23
+ yolov5s-cls.mlmodel # CoreML (macOS-only)
24
+ yolov5s-cls_saved_model # TensorFlow SavedModel
25
+ yolov5s-cls.pb # TensorFlow GraphDef
26
+ yolov5s-cls.tflite # TensorFlow Lite
27
+ yolov5s-cls_edgetpu.tflite # TensorFlow Edge TPU
28
+ yolov5s-cls_paddle_model # PaddlePaddle
29
+ """
30
+
31
+ import argparse
32
+ import os
33
+ import platform
34
+ import sys
35
+ from pathlib import Path
36
+
37
+ import torch
38
+ import torch.nn.functional as F
39
+
40
+ FILE = Path(__file__).resolve()
41
+ ROOT = FILE.parents[1] # YOLOv5 root directory
42
+ if str(ROOT) not in sys.path:
43
+ sys.path.append(str(ROOT)) # add ROOT to PATH
44
+ ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
45
+
46
+ from models.common import DetectMultiBackend
47
+ from utils.augmentations import classify_transforms
48
+ from utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages, LoadScreenshots, LoadStreams
49
+ from utils.general import (LOGGER, Profile, check_file, check_img_size, check_imshow, check_requirements, colorstr, cv2,
50
+ increment_path, print_args, strip_optimizer)
51
+ from utils.plots import Annotator
52
+ from utils.torch_utils import select_device, smart_inference_mode
53
+
54
+
55
+ @smart_inference_mode()
56
+ def run(
57
+ weights=ROOT / 'yolov5s-cls.pt', # model.pt path(s)
58
+ source=ROOT / 'data/images', # file/dir/URL/glob/screen/0(webcam)
59
+ data=ROOT / 'data/coco128.yaml', # dataset.yaml path
60
+ imgsz=(224, 224), # inference size (height, width)
61
+ device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
62
+ view_img=False, # show results
63
+ save_txt=False, # save results to *.txt
64
+ nosave=False, # do not save images/videos
65
+ augment=False, # augmented inference
66
+ visualize=False, # visualize features
67
+ update=False, # update all models
68
+ project=ROOT / 'runs/predict-cls', # save results to project/name
69
+ name='exp', # save results to project/name
70
+ exist_ok=False, # existing project/name ok, do not increment
71
+ half=False, # use FP16 half-precision inference
72
+ dnn=False, # use OpenCV DNN for ONNX inference
73
+ vid_stride=1, # video frame-rate stride
74
+ ):
75
+ source = str(source)
76
+ save_img = not nosave and not source.endswith('.txt') # save inference images
77
+ is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
78
+ is_url = source.lower().startswith(('rtsp://', 'rtmp://', 'http://', 'https://'))
79
+ webcam = source.isnumeric() or source.endswith('.streams') or (is_url and not is_file)
80
+ screenshot = source.lower().startswith('screen')
81
+ if is_url and is_file:
82
+ source = check_file(source) # download
83
+
84
+ # Directories
85
+ save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
86
+ (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
87
+
88
+ # Load model
89
+ device = select_device(device)
90
+ model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
91
+ stride, names, pt = model.stride, model.names, model.pt
92
+ imgsz = check_img_size(imgsz, s=stride) # check image size
93
+
94
+ # Dataloader
95
+ bs = 1 # batch_size
96
+ if webcam:
97
+ view_img = check_imshow(warn=True)
98
+ dataset = LoadStreams(source, img_size=imgsz, transforms=classify_transforms(imgsz[0]), vid_stride=vid_stride)
99
+ bs = len(dataset)
100
+ elif screenshot:
101
+ dataset = LoadScreenshots(source, img_size=imgsz, stride=stride, auto=pt)
102
+ else:
103
+ dataset = LoadImages(source, img_size=imgsz, transforms=classify_transforms(imgsz[0]), vid_stride=vid_stride)
104
+ vid_path, vid_writer = [None] * bs, [None] * bs
105
+
106
+ # Run inference
107
+ model.warmup(imgsz=(1 if pt else bs, 3, *imgsz)) # warmup
108
+ seen, windows, dt = 0, [], (Profile(), Profile(), Profile())
109
+ for path, im, im0s, vid_cap, s in dataset:
110
+ with dt[0]:
111
+ im = torch.Tensor(im).to(model.device)
112
+ im = im.half() if model.fp16 else im.float() # uint8 to fp16/32
113
+ if len(im.shape) == 3:
114
+ im = im[None] # expand for batch dim
115
+
116
+ # Inference
117
+ with dt[1]:
118
+ results = model(im)
119
+
120
+ # Post-process
121
+ with dt[2]:
122
+ pred = F.softmax(results, dim=1) # probabilities
123
+
124
+ # Process predictions
125
+ for i, prob in enumerate(pred): # per image
126
+ seen += 1
127
+ if webcam: # batch_size >= 1
128
+ p, im0, frame = path[i], im0s[i].copy(), dataset.count
129
+ s += f'{i}: '
130
+ else:
131
+ p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0)
132
+
133
+ p = Path(p) # to Path
134
+ save_path = str(save_dir / p.name) # im.jpg
135
+ txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # im.txt
136
+
137
+ s += '%gx%g ' % im.shape[2:] # print string
138
+ annotator = Annotator(im0, example=str(names), pil=True)
139
+
140
+ # Print results
141
+ top5i = prob.argsort(0, descending=True)[:5].tolist() # top 5 indices
142
+ s += f"{', '.join(f'{names[j]} {prob[j]:.2f}' for j in top5i)}, "
143
+
144
+ # Write results
145
+ text = '\n'.join(f'{prob[j]:.2f} {names[j]}' for j in top5i)
146
+ if save_img or view_img: # Add bbox to image
147
+ annotator.text((32, 32), text, txt_color=(255, 255, 255))
148
+ if save_txt: # Write to file
149
+ with open(f'{txt_path}.txt', 'a') as f:
150
+ f.write(text + '\n')
151
+
152
+ # Stream results
153
+ im0 = annotator.result()
154
+ if view_img:
155
+ if platform.system() == 'Linux' and p not in windows:
156
+ windows.append(p)
157
+ cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO) # allow window resize (Linux)
158
+ cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0])
159
+ cv2.imshow(str(p), im0)
160
+ cv2.waitKey(1) # 1 millisecond
161
+
162
+ # Save results (image with detections)
163
+ if save_img:
164
+ if dataset.mode == 'image':
165
+ cv2.imwrite(save_path, im0)
166
+ else: # 'video' or 'stream'
167
+ if vid_path[i] != save_path: # new video
168
+ vid_path[i] = save_path
169
+ if isinstance(vid_writer[i], cv2.VideoWriter):
170
+ vid_writer[i].release() # release previous video writer
171
+ if vid_cap: # video
172
+ fps = vid_cap.get(cv2.CAP_PROP_FPS)
173
+ w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
174
+ h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
175
+ else: # stream
176
+ fps, w, h = 30, im0.shape[1], im0.shape[0]
177
+ save_path = str(Path(save_path).with_suffix('.mp4')) # force *.mp4 suffix on results videos
178
+ vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
179
+ vid_writer[i].write(im0)
180
+
181
+ # Print time (inference-only)
182
+ LOGGER.info(f'{s}{dt[1].dt * 1E3:.1f}ms')
183
+
184
+ # Print results
185
+ t = tuple(x.t / seen * 1E3 for x in dt) # speeds per image
186
+ LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}' % t)
187
+ if save_txt or save_img:
188
+ s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
189
+ LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
190
+ if update:
191
+ strip_optimizer(weights[0]) # update model (to fix SourceChangeWarning)
192
+
193
+
194
+ def parse_opt():
195
+ parser = argparse.ArgumentParser()
196
+ parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s-cls.pt', help='model path(s)')
197
+ parser.add_argument('--source', type=str, default=ROOT / 'data/images', help='file/dir/URL/glob/screen/0(webcam)')
198
+ parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='(optional) dataset.yaml path')
199
+ parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[224], help='inference size h,w')
200
+ parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
201
+ parser.add_argument('--view-img', action='store_true', help='show results')
202
+ parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
203
+ parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
204
+ parser.add_argument('--augment', action='store_true', help='augmented inference')
205
+ parser.add_argument('--visualize', action='store_true', help='visualize features')
206
+ parser.add_argument('--update', action='store_true', help='update all models')
207
+ parser.add_argument('--project', default=ROOT / 'runs/predict-cls', help='save results to project/name')
208
+ parser.add_argument('--name', default='exp', help='save results to project/name')
209
+ parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
210
+ parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
211
+ parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
212
+ parser.add_argument('--vid-stride', type=int, default=1, help='video frame-rate stride')
213
+ opt = parser.parse_args()
214
+ opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand
215
+ print_args(vars(opt))
216
+ return opt
217
+
218
+
219
+ def main(opt):
220
+ check_requirements(ROOT / 'requirements.txt', exclude=('tensorboard', 'thop'))
221
+ run(**vars(opt))
222
+
223
+
224
+ if __name__ == '__main__':
225
+ opt = parse_opt()
226
+ main(opt)
TextDetection/classify/train.py ADDED
@@ -0,0 +1,333 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 πŸš€ by Ultralytics, AGPL-3.0 license
2
+ """
3
+ Train a YOLOv5 classifier model on a classification dataset
4
+
5
+ Usage - Single-GPU training:
6
+ $ python classify/train.py --model yolov5s-cls.pt --data imagenette160 --epochs 5 --img 224
7
+
8
+ Usage - Multi-GPU DDP training:
9
+ $ python -m torch.distributed.run --nproc_per_node 4 --master_port 2022 classify/train.py --model yolov5s-cls.pt --data imagenet --epochs 5 --img 224 --device 0,1,2,3
10
+
11
+ Datasets: --data mnist, fashion-mnist, cifar10, cifar100, imagenette, imagewoof, imagenet, or 'path/to/data'
12
+ YOLOv5-cls models: --model yolov5n-cls.pt, yolov5s-cls.pt, yolov5m-cls.pt, yolov5l-cls.pt, yolov5x-cls.pt
13
+ Torchvision models: --model resnet50, efficientnet_b0, etc. See https://pytorch.org/vision/stable/models.html
14
+ """
15
+
16
+ import argparse
17
+ import os
18
+ import subprocess
19
+ import sys
20
+ import time
21
+ from copy import deepcopy
22
+ from datetime import datetime
23
+ from pathlib import Path
24
+
25
+ import torch
26
+ import torch.distributed as dist
27
+ import torch.hub as hub
28
+ import torch.optim.lr_scheduler as lr_scheduler
29
+ import torchvision
30
+ from torch.cuda import amp
31
+ from tqdm import tqdm
32
+
33
+ FILE = Path(__file__).resolve()
34
+ ROOT = FILE.parents[1] # YOLOv5 root directory
35
+ if str(ROOT) not in sys.path:
36
+ sys.path.append(str(ROOT)) # add ROOT to PATH
37
+ ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
38
+
39
+ from classify import val as validate
40
+ from models.experimental import attempt_load
41
+ from models.yolo import ClassificationModel, DetectionModel
42
+ from utils.dataloaders import create_classification_dataloader
43
+ from utils.general import (DATASETS_DIR, LOGGER, TQDM_BAR_FORMAT, WorkingDirectory, check_git_info, check_git_status,
44
+ check_requirements, colorstr, download, increment_path, init_seeds, print_args, yaml_save)
45
+ from utils.loggers import GenericLogger
46
+ from utils.plots import imshow_cls
47
+ from utils.torch_utils import (ModelEMA, de_parallel, model_info, reshape_classifier_output, select_device, smart_DDP,
48
+ smart_optimizer, smartCrossEntropyLoss, torch_distributed_zero_first)
49
+
50
+ LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1)) # https://pytorch.org/docs/stable/elastic/run.html
51
+ RANK = int(os.getenv('RANK', -1))
52
+ WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1))
53
+ GIT_INFO = check_git_info()
54
+
55
+
56
+ def train(opt, device):
57
+ init_seeds(opt.seed + 1 + RANK, deterministic=True)
58
+ save_dir, data, bs, epochs, nw, imgsz, pretrained = \
59
+ opt.save_dir, Path(opt.data), opt.batch_size, opt.epochs, min(os.cpu_count() - 1, opt.workers), \
60
+ opt.imgsz, str(opt.pretrained).lower() == 'true'
61
+ cuda = device.type != 'cpu'
62
+
63
+ # Directories
64
+ wdir = save_dir / 'weights'
65
+ wdir.mkdir(parents=True, exist_ok=True) # make dir
66
+ last, best = wdir / 'last.pt', wdir / 'best.pt'
67
+
68
+ # Save run settings
69
+ yaml_save(save_dir / 'opt.yaml', vars(opt))
70
+
71
+ # Logger
72
+ logger = GenericLogger(opt=opt, console_logger=LOGGER) if RANK in {-1, 0} else None
73
+
74
+ # Download Dataset
75
+ with torch_distributed_zero_first(LOCAL_RANK), WorkingDirectory(ROOT):
76
+ data_dir = data if data.is_dir() else (DATASETS_DIR / data)
77
+ if not data_dir.is_dir():
78
+ LOGGER.info(f'\nDataset not found ⚠️, missing path {data_dir}, attempting download...')
79
+ t = time.time()
80
+ if str(data) == 'imagenet':
81
+ subprocess.run(['bash', str(ROOT / 'data/scripts/get_imagenet.sh')], shell=True, check=True)
82
+ else:
83
+ url = f'https://github.com/ultralytics/yolov5/releases/download/v1.0/{data}.zip'
84
+ download(url, dir=data_dir.parent)
85
+ s = f"Dataset download success βœ… ({time.time() - t:.1f}s), saved to {colorstr('bold', data_dir)}\n"
86
+ LOGGER.info(s)
87
+
88
+ # Dataloaders
89
+ nc = len([x for x in (data_dir / 'train').glob('*') if x.is_dir()]) # number of classes
90
+ trainloader = create_classification_dataloader(path=data_dir / 'train',
91
+ imgsz=imgsz,
92
+ batch_size=bs // WORLD_SIZE,
93
+ augment=True,
94
+ cache=opt.cache,
95
+ rank=LOCAL_RANK,
96
+ workers=nw)
97
+
98
+ test_dir = data_dir / 'test' if (data_dir / 'test').exists() else data_dir / 'val' # data/test or data/val
99
+ if RANK in {-1, 0}:
100
+ testloader = create_classification_dataloader(path=test_dir,
101
+ imgsz=imgsz,
102
+ batch_size=bs // WORLD_SIZE * 2,
103
+ augment=False,
104
+ cache=opt.cache,
105
+ rank=-1,
106
+ workers=nw)
107
+
108
+ # Model
109
+ with torch_distributed_zero_first(LOCAL_RANK), WorkingDirectory(ROOT):
110
+ if Path(opt.model).is_file() or opt.model.endswith('.pt'):
111
+ model = attempt_load(opt.model, device='cpu', fuse=False)
112
+ elif opt.model in torchvision.models.__dict__: # TorchVision models i.e. resnet50, efficientnet_b0
113
+ model = torchvision.models.__dict__[opt.model](weights='IMAGENET1K_V1' if pretrained else None)
114
+ else:
115
+ m = hub.list('ultralytics/yolov5') # + hub.list('pytorch/vision') # models
116
+ raise ModuleNotFoundError(f'--model {opt.model} not found. Available models are: \n' + '\n'.join(m))
117
+ if isinstance(model, DetectionModel):
118
+ LOGGER.warning("WARNING ⚠️ pass YOLOv5 classifier model with '-cls' suffix, i.e. '--model yolov5s-cls.pt'")
119
+ model = ClassificationModel(model=model, nc=nc, cutoff=opt.cutoff or 10) # convert to classification model
120
+ reshape_classifier_output(model, nc) # update class count
121
+ for m in model.modules():
122
+ if not pretrained and hasattr(m, 'reset_parameters'):
123
+ m.reset_parameters()
124
+ if isinstance(m, torch.nn.Dropout) and opt.dropout is not None:
125
+ m.p = opt.dropout # set dropout
126
+ for p in model.parameters():
127
+ p.requires_grad = True # for training
128
+ model = model.to(device)
129
+
130
+ # Info
131
+ if RANK in {-1, 0}:
132
+ model.names = trainloader.dataset.classes # attach class names
133
+ model.transforms = testloader.dataset.torch_transforms # attach inference transforms
134
+ model_info(model)
135
+ if opt.verbose:
136
+ LOGGER.info(model)
137
+ images, labels = next(iter(trainloader))
138
+ file = imshow_cls(images[:25], labels[:25], names=model.names, f=save_dir / 'train_images.jpg')
139
+ logger.log_images(file, name='Train Examples')
140
+ logger.log_graph(model, imgsz) # log model
141
+
142
+ # Optimizer
143
+ optimizer = smart_optimizer(model, opt.optimizer, opt.lr0, momentum=0.9, decay=opt.decay)
144
+
145
+ # Scheduler
146
+ lrf = 0.01 # final lr (fraction of lr0)
147
+ # lf = lambda x: ((1 + math.cos(x * math.pi / epochs)) / 2) * (1 - lrf) + lrf # cosine
148
+ lf = lambda x: (1 - x / epochs) * (1 - lrf) + lrf # linear
149
+ scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
150
+ # scheduler = lr_scheduler.OneCycleLR(optimizer, max_lr=lr0, total_steps=epochs, pct_start=0.1,
151
+ # final_div_factor=1 / 25 / lrf)
152
+
153
+ # EMA
154
+ ema = ModelEMA(model) if RANK in {-1, 0} else None
155
+
156
+ # DDP mode
157
+ if cuda and RANK != -1:
158
+ model = smart_DDP(model)
159
+
160
+ # Train
161
+ t0 = time.time()
162
+ criterion = smartCrossEntropyLoss(label_smoothing=opt.label_smoothing) # loss function
163
+ best_fitness = 0.0
164
+ scaler = amp.GradScaler(enabled=cuda)
165
+ val = test_dir.stem # 'val' or 'test'
166
+ LOGGER.info(f'Image sizes {imgsz} train, {imgsz} test\n'
167
+ f'Using {nw * WORLD_SIZE} dataloader workers\n'
168
+ f"Logging results to {colorstr('bold', save_dir)}\n"
169
+ f'Starting {opt.model} training on {data} dataset with {nc} classes for {epochs} epochs...\n\n'
170
+ f"{'Epoch':>10}{'GPU_mem':>10}{'train_loss':>12}{f'{val}_loss':>12}{'top1_acc':>12}{'top5_acc':>12}")
171
+ for epoch in range(epochs): # loop over the dataset multiple times
172
+ tloss, vloss, fitness = 0.0, 0.0, 0.0 # train loss, val loss, fitness
173
+ model.train()
174
+ if RANK != -1:
175
+ trainloader.sampler.set_epoch(epoch)
176
+ pbar = enumerate(trainloader)
177
+ if RANK in {-1, 0}:
178
+ pbar = tqdm(enumerate(trainloader), total=len(trainloader), bar_format=TQDM_BAR_FORMAT)
179
+ for i, (images, labels) in pbar: # progress bar
180
+ images, labels = images.to(device, non_blocking=True), labels.to(device)
181
+
182
+ # Forward
183
+ with amp.autocast(enabled=cuda): # stability issues when enabled
184
+ loss = criterion(model(images), labels)
185
+
186
+ # Backward
187
+ scaler.scale(loss).backward()
188
+
189
+ # Optimize
190
+ scaler.unscale_(optimizer) # unscale gradients
191
+ torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=10.0) # clip gradients
192
+ scaler.step(optimizer)
193
+ scaler.update()
194
+ optimizer.zero_grad()
195
+ if ema:
196
+ ema.update(model)
197
+
198
+ if RANK in {-1, 0}:
199
+ # Print
200
+ tloss = (tloss * i + loss.item()) / (i + 1) # update mean losses
201
+ mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0) # (GB)
202
+ pbar.desc = f"{f'{epoch + 1}/{epochs}':>10}{mem:>10}{tloss:>12.3g}" + ' ' * 36
203
+
204
+ # Test
205
+ if i == len(pbar) - 1: # last batch
206
+ top1, top5, vloss = validate.run(model=ema.ema,
207
+ dataloader=testloader,
208
+ criterion=criterion,
209
+ pbar=pbar) # test accuracy, loss
210
+ fitness = top1 # define fitness as top1 accuracy
211
+
212
+ # Scheduler
213
+ scheduler.step()
214
+
215
+ # Log metrics
216
+ if RANK in {-1, 0}:
217
+ # Best fitness
218
+ if fitness > best_fitness:
219
+ best_fitness = fitness
220
+
221
+ # Log
222
+ metrics = {
223
+ 'train/loss': tloss,
224
+ f'{val}/loss': vloss,
225
+ 'metrics/accuracy_top1': top1,
226
+ 'metrics/accuracy_top5': top5,
227
+ 'lr/0': optimizer.param_groups[0]['lr']} # learning rate
228
+ logger.log_metrics(metrics, epoch)
229
+
230
+ # Save model
231
+ final_epoch = epoch + 1 == epochs
232
+ if (not opt.nosave) or final_epoch:
233
+ ckpt = {
234
+ 'epoch': epoch,
235
+ 'best_fitness': best_fitness,
236
+ 'model': deepcopy(ema.ema).half(), # deepcopy(de_parallel(model)).half(),
237
+ 'ema': None, # deepcopy(ema.ema).half(),
238
+ 'updates': ema.updates,
239
+ 'optimizer': None, # optimizer.state_dict(),
240
+ 'opt': vars(opt),
241
+ 'git': GIT_INFO, # {remote, branch, commit} if a git repo
242
+ 'date': datetime.now().isoformat()}
243
+
244
+ # Save last, best and delete
245
+ torch.save(ckpt, last)
246
+ if best_fitness == fitness:
247
+ torch.save(ckpt, best)
248
+ del ckpt
249
+
250
+ # Train complete
251
+ if RANK in {-1, 0} and final_epoch:
252
+ LOGGER.info(f'\nTraining complete ({(time.time() - t0) / 3600:.3f} hours)'
253
+ f"\nResults saved to {colorstr('bold', save_dir)}"
254
+ f'\nPredict: python classify/predict.py --weights {best} --source im.jpg'
255
+ f'\nValidate: python classify/val.py --weights {best} --data {data_dir}'
256
+ f'\nExport: python export.py --weights {best} --include onnx'
257
+ f"\nPyTorch Hub: model = torch.hub.load('ultralytics/yolov5', 'custom', '{best}')"
258
+ f'\nVisualize: https://netron.app\n')
259
+
260
+ # Plot examples
261
+ images, labels = (x[:25] for x in next(iter(testloader))) # first 25 images and labels
262
+ pred = torch.max(ema.ema(images.to(device)), 1)[1]
263
+ file = imshow_cls(images, labels, pred, de_parallel(model).names, verbose=False, f=save_dir / 'test_images.jpg')
264
+
265
+ # Log results
266
+ meta = {'epochs': epochs, 'top1_acc': best_fitness, 'date': datetime.now().isoformat()}
267
+ logger.log_images(file, name='Test Examples (true-predicted)', epoch=epoch)
268
+ logger.log_model(best, epochs, metadata=meta)
269
+
270
+
271
+ def parse_opt(known=False):
272
+ parser = argparse.ArgumentParser()
273
+ parser.add_argument('--model', type=str, default='yolov5s-cls.pt', help='initial weights path')
274
+ parser.add_argument('--data', type=str, default='imagenette160', help='cifar10, cifar100, mnist, imagenet, ...')
275
+ parser.add_argument('--epochs', type=int, default=10, help='total training epochs')
276
+ parser.add_argument('--batch-size', type=int, default=64, help='total batch size for all GPUs')
277
+ parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=224, help='train, val image size (pixels)')
278
+ parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
279
+ parser.add_argument('--cache', type=str, nargs='?', const='ram', help='--cache images in "ram" (default) or "disk"')
280
+ parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
281
+ parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)')
282
+ parser.add_argument('--project', default=ROOT / 'runs/train-cls', help='save to project/name')
283
+ parser.add_argument('--name', default='exp', help='save to project/name')
284
+ parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
285
+ parser.add_argument('--pretrained', nargs='?', const=True, default=True, help='start from i.e. --pretrained False')
286
+ parser.add_argument('--optimizer', choices=['SGD', 'Adam', 'AdamW', 'RMSProp'], default='Adam', help='optimizer')
287
+ parser.add_argument('--lr0', type=float, default=0.001, help='initial learning rate')
288
+ parser.add_argument('--decay', type=float, default=5e-5, help='weight decay')
289
+ parser.add_argument('--label-smoothing', type=float, default=0.1, help='Label smoothing epsilon')
290
+ parser.add_argument('--cutoff', type=int, default=None, help='Model layer cutoff index for Classify() head')
291
+ parser.add_argument('--dropout', type=float, default=None, help='Dropout (fraction)')
292
+ parser.add_argument('--verbose', action='store_true', help='Verbose mode')
293
+ parser.add_argument('--seed', type=int, default=0, help='Global training seed')
294
+ parser.add_argument('--local_rank', type=int, default=-1, help='Automatic DDP Multi-GPU argument, do not modify')
295
+ return parser.parse_known_args()[0] if known else parser.parse_args()
296
+
297
+
298
+ def main(opt):
299
+ # Checks
300
+ if RANK in {-1, 0}:
301
+ print_args(vars(opt))
302
+ check_git_status()
303
+ check_requirements(ROOT / 'requirements.txt')
304
+
305
+ # DDP mode
306
+ device = select_device(opt.device, batch_size=opt.batch_size)
307
+ if LOCAL_RANK != -1:
308
+ assert opt.batch_size != -1, 'AutoBatch is coming soon for classification, please pass a valid --batch-size'
309
+ assert opt.batch_size % WORLD_SIZE == 0, f'--batch-size {opt.batch_size} must be multiple of WORLD_SIZE'
310
+ assert torch.cuda.device_count() > LOCAL_RANK, 'insufficient CUDA devices for DDP command'
311
+ torch.cuda.set_device(LOCAL_RANK)
312
+ device = torch.device('cuda', LOCAL_RANK)
313
+ dist.init_process_group(backend='nccl' if dist.is_nccl_available() else 'gloo')
314
+
315
+ # Parameters
316
+ opt.save_dir = increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok) # increment run
317
+
318
+ # Train
319
+ train(opt, device)
320
+
321
+
322
+ def run(**kwargs):
323
+ # Usage: from yolov5 import classify; classify.train.run(data=mnist, imgsz=320, model='yolov5m')
324
+ opt = parse_opt(True)
325
+ for k, v in kwargs.items():
326
+ setattr(opt, k, v)
327
+ main(opt)
328
+ return opt
329
+
330
+
331
+ if __name__ == '__main__':
332
+ opt = parse_opt()
333
+ main(opt)
TextDetection/classify/tutorial.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
TextDetection/classify/val.py ADDED
@@ -0,0 +1,170 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 πŸš€ by Ultralytics, AGPL-3.0 license
2
+ """
3
+ Validate a trained YOLOv5 classification model on a classification dataset
4
+
5
+ Usage:
6
+ $ bash data/scripts/get_imagenet.sh --val # download ImageNet val split (6.3G, 50000 images)
7
+ $ python classify/val.py --weights yolov5m-cls.pt --data ../datasets/imagenet --img 224 # validate ImageNet
8
+
9
+ Usage - formats:
10
+ $ python classify/val.py --weights yolov5s-cls.pt # PyTorch
11
+ yolov5s-cls.torchscript # TorchScript
12
+ yolov5s-cls.onnx # ONNX Runtime or OpenCV DNN with --dnn
13
+ yolov5s-cls_openvino_model # OpenVINO
14
+ yolov5s-cls.engine # TensorRT
15
+ yolov5s-cls.mlmodel # CoreML (macOS-only)
16
+ yolov5s-cls_saved_model # TensorFlow SavedModel
17
+ yolov5s-cls.pb # TensorFlow GraphDef
18
+ yolov5s-cls.tflite # TensorFlow Lite
19
+ yolov5s-cls_edgetpu.tflite # TensorFlow Edge TPU
20
+ yolov5s-cls_paddle_model # PaddlePaddle
21
+ """
22
+
23
+ import argparse
24
+ import os
25
+ import sys
26
+ from pathlib import Path
27
+
28
+ import torch
29
+ from tqdm import tqdm
30
+
31
+ FILE = Path(__file__).resolve()
32
+ ROOT = FILE.parents[1] # YOLOv5 root directory
33
+ if str(ROOT) not in sys.path:
34
+ sys.path.append(str(ROOT)) # add ROOT to PATH
35
+ ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
36
+
37
+ from models.common import DetectMultiBackend
38
+ from utils.dataloaders import create_classification_dataloader
39
+ from utils.general import (LOGGER, TQDM_BAR_FORMAT, Profile, check_img_size, check_requirements, colorstr,
40
+ increment_path, print_args)
41
+ from utils.torch_utils import select_device, smart_inference_mode
42
+
43
+
44
+ @smart_inference_mode()
45
+ def run(
46
+ data=ROOT / '../datasets/mnist', # dataset dir
47
+ weights=ROOT / 'yolov5s-cls.pt', # model.pt path(s)
48
+ batch_size=128, # batch size
49
+ imgsz=224, # inference size (pixels)
50
+ device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
51
+ workers=8, # max dataloader workers (per RANK in DDP mode)
52
+ verbose=False, # verbose output
53
+ project=ROOT / 'runs/val-cls', # save to project/name
54
+ name='exp', # save to project/name
55
+ exist_ok=False, # existing project/name ok, do not increment
56
+ half=False, # use FP16 half-precision inference
57
+ dnn=False, # use OpenCV DNN for ONNX inference
58
+ model=None,
59
+ dataloader=None,
60
+ criterion=None,
61
+ pbar=None,
62
+ ):
63
+ # Initialize/load model and set device
64
+ training = model is not None
65
+ if training: # called by train.py
66
+ device, pt, jit, engine = next(model.parameters()).device, True, False, False # get model device, PyTorch model
67
+ half &= device.type != 'cpu' # half precision only supported on CUDA
68
+ model.half() if half else model.float()
69
+ else: # called directly
70
+ device = select_device(device, batch_size=batch_size)
71
+
72
+ # Directories
73
+ save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
74
+ save_dir.mkdir(parents=True, exist_ok=True) # make dir
75
+
76
+ # Load model
77
+ model = DetectMultiBackend(weights, device=device, dnn=dnn, fp16=half)
78
+ stride, pt, jit, engine = model.stride, model.pt, model.jit, model.engine
79
+ imgsz = check_img_size(imgsz, s=stride) # check image size
80
+ half = model.fp16 # FP16 supported on limited backends with CUDA
81
+ if engine:
82
+ batch_size = model.batch_size
83
+ else:
84
+ device = model.device
85
+ if not (pt or jit):
86
+ batch_size = 1 # export.py models default to batch-size 1
87
+ LOGGER.info(f'Forcing --batch-size 1 square inference (1,3,{imgsz},{imgsz}) for non-PyTorch models')
88
+
89
+ # Dataloader
90
+ data = Path(data)
91
+ test_dir = data / 'test' if (data / 'test').exists() else data / 'val' # data/test or data/val
92
+ dataloader = create_classification_dataloader(path=test_dir,
93
+ imgsz=imgsz,
94
+ batch_size=batch_size,
95
+ augment=False,
96
+ rank=-1,
97
+ workers=workers)
98
+
99
+ model.eval()
100
+ pred, targets, loss, dt = [], [], 0, (Profile(), Profile(), Profile())
101
+ n = len(dataloader) # number of batches
102
+ action = 'validating' if dataloader.dataset.root.stem == 'val' else 'testing'
103
+ desc = f'{pbar.desc[:-36]}{action:>36}' if pbar else f'{action}'
104
+ bar = tqdm(dataloader, desc, n, not training, bar_format=TQDM_BAR_FORMAT, position=0)
105
+ with torch.cuda.amp.autocast(enabled=device.type != 'cpu'):
106
+ for images, labels in bar:
107
+ with dt[0]:
108
+ images, labels = images.to(device, non_blocking=True), labels.to(device)
109
+
110
+ with dt[1]:
111
+ y = model(images)
112
+
113
+ with dt[2]:
114
+ pred.append(y.argsort(1, descending=True)[:, :5])
115
+ targets.append(labels)
116
+ if criterion:
117
+ loss += criterion(y, labels)
118
+
119
+ loss /= n
120
+ pred, targets = torch.cat(pred), torch.cat(targets)
121
+ correct = (targets[:, None] == pred).float()
122
+ acc = torch.stack((correct[:, 0], correct.max(1).values), dim=1) # (top1, top5) accuracy
123
+ top1, top5 = acc.mean(0).tolist()
124
+
125
+ if pbar:
126
+ pbar.desc = f'{pbar.desc[:-36]}{loss:>12.3g}{top1:>12.3g}{top5:>12.3g}'
127
+ if verbose: # all classes
128
+ LOGGER.info(f"{'Class':>24}{'Images':>12}{'top1_acc':>12}{'top5_acc':>12}")
129
+ LOGGER.info(f"{'all':>24}{targets.shape[0]:>12}{top1:>12.3g}{top5:>12.3g}")
130
+ for i, c in model.names.items():
131
+ acc_i = acc[targets == i]
132
+ top1i, top5i = acc_i.mean(0).tolist()
133
+ LOGGER.info(f'{c:>24}{acc_i.shape[0]:>12}{top1i:>12.3g}{top5i:>12.3g}')
134
+
135
+ # Print results
136
+ t = tuple(x.t / len(dataloader.dataset.samples) * 1E3 for x in dt) # speeds per image
137
+ shape = (1, 3, imgsz, imgsz)
138
+ LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms post-process per image at shape {shape}' % t)
139
+ LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}")
140
+
141
+ return top1, top5, loss
142
+
143
+
144
+ def parse_opt():
145
+ parser = argparse.ArgumentParser()
146
+ parser.add_argument('--data', type=str, default=ROOT / '../datasets/mnist', help='dataset path')
147
+ parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s-cls.pt', help='model.pt path(s)')
148
+ parser.add_argument('--batch-size', type=int, default=128, help='batch size')
149
+ parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=224, help='inference size (pixels)')
150
+ parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
151
+ parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)')
152
+ parser.add_argument('--verbose', nargs='?', const=True, default=True, help='verbose output')
153
+ parser.add_argument('--project', default=ROOT / 'runs/val-cls', help='save to project/name')
154
+ parser.add_argument('--name', default='exp', help='save to project/name')
155
+ parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
156
+ parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
157
+ parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
158
+ opt = parser.parse_args()
159
+ print_args(vars(opt))
160
+ return opt
161
+
162
+
163
+ def main(opt):
164
+ check_requirements(ROOT / 'requirements.txt', exclude=('tensorboard', 'thop'))
165
+ run(**vars(opt))
166
+
167
+
168
+ if __name__ == '__main__':
169
+ opt = parse_opt()
170
+ main(opt)
TextDetection/detect.py ADDED
@@ -0,0 +1,271 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 πŸš€ by Ultralytics, AGPL-3.0 license
2
+ """
3
+ Run YOLOv5 detection inference on images, videos, directories, globs, YouTube, webcam, streams, etc.
4
+
5
+ Usage - sources:
6
+ $ python detect.py --weights yolov5s.pt --source 0 # webcam
7
+ img.jpg # image
8
+ vid.mp4 # video
9
+ screen # screenshot
10
+ path/ # directory
11
+ list.txt # list of images
12
+ list.streams # list of streams
13
+ 'path/*.jpg' # glob
14
+ 'https://youtu.be/Zgi9g1ksQHc' # YouTube
15
+ 'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
16
+
17
+ Usage - formats:
18
+ $ python detect.py --weights yolov5s.pt # PyTorch
19
+ yolov5s.torchscript # TorchScript
20
+ yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn
21
+ yolov5s_openvino_model # OpenVINO
22
+ yolov5s.engine # TensorRT
23
+ yolov5s.mlmodel # CoreML (macOS-only)
24
+ yolov5s_saved_model # TensorFlow SavedModel
25
+ yolov5s.pb # TensorFlow GraphDef
26
+ yolov5s.tflite # TensorFlow Lite
27
+ yolov5s_edgetpu.tflite # TensorFlow Edge TPU
28
+ yolov5s_paddle_model # PaddlePaddle
29
+ """
30
+
31
+ import argparse
32
+ import os
33
+ import platform
34
+ import sys
35
+ from pathlib import Path
36
+
37
+ import torch
38
+
39
+ FILE = Path(__file__).resolve()
40
+ ROOT = FILE.parents[0] # YOLOv5 root directory
41
+ if str(ROOT) not in sys.path:
42
+ sys.path.append(str(ROOT)) # add ROOT to PATH
43
+ ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
44
+
45
+ from models.common import DetectMultiBackend
46
+ from utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages, LoadScreenshots, LoadStreams
47
+ from utils.general import (LOGGER, Profile, check_file, check_img_size, check_imshow, check_requirements, colorstr, cv2,
48
+ increment_path, non_max_suppression, print_args, scale_boxes, strip_optimizer, xyxy2xywh)
49
+ from utils.plots import Annotator, colors, save_one_box
50
+ from utils.torch_utils import select_device, smart_inference_mode
51
+
52
+
53
+ @smart_inference_mode()
54
+ def run(
55
+ weights=ROOT / 'yolov5s.pt', # model path or triton URL
56
+ source=ROOT / 'data/images', # file/dir/URL/glob/screen/0(webcam)
57
+ data=ROOT / 'data/coco128.yaml', # dataset.yaml path
58
+ imgsz=(640, 640), # inference size (height, width)
59
+ conf_thres=0.25, # confidence threshold
60
+ iou_thres=0.45, # NMS IOU threshold
61
+ max_det=1000, # maximum detections per image
62
+ device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
63
+ view_img=False, # show results
64
+ save_txt=True, # save results to *.txt
65
+ save_conf=True, # save confidences in --save-txt labels
66
+ save_crop=False, # save cropped prediction boxes
67
+ nosave=False, # do not save images/videos
68
+ classes=None, # filter by class: --class 0, or --class 0 2 3
69
+ agnostic_nms=False, # class-agnostic NMS
70
+ augment=False, # augmented inference
71
+ visualize=False, # visualize features
72
+ update=False, # update all models
73
+ project=ROOT / 'runs/detect', # save results to project/name
74
+ name='exp', # save results to project/name
75
+ exist_ok=False, # existing project/name ok, do not increment
76
+ line_thickness=3, # bounding box thickness (pixels)
77
+ hide_labels=False, # hide labels
78
+ hide_conf=False, # hide confidences
79
+ half=False, # use FP16 half-precision inference
80
+ dnn=False, # use OpenCV DNN for ONNX inference
81
+ vid_stride=1, # video frame-rate stride
82
+ ):
83
+ source = str(source)
84
+ save_img = not nosave and not source.endswith('.txt') # save inference images
85
+ is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
86
+ is_url = source.lower().startswith(('rtsp://', 'rtmp://', 'http://', 'https://'))
87
+ webcam = source.isnumeric() or source.endswith('.streams') or (is_url and not is_file)
88
+ screenshot = source.lower().startswith('screen')
89
+ if is_url and is_file:
90
+ source = check_file(source) # download
91
+
92
+ # Directories
93
+ save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
94
+ (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
95
+
96
+ # Load model
97
+ device = select_device(device)
98
+ model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
99
+ stride, names, pt = model.stride, model.names, model.pt
100
+ imgsz = check_img_size(imgsz, s=stride) # check image size
101
+
102
+ # Dataloader
103
+ bs = 1 # batch_size
104
+ if webcam:
105
+ view_img = check_imshow(warn=True)
106
+ dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
107
+ bs = len(dataset)
108
+ elif screenshot:
109
+ dataset = LoadScreenshots(source, img_size=imgsz, stride=stride, auto=pt)
110
+ else:
111
+ dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
112
+ vid_path, vid_writer = [None] * bs, [None] * bs
113
+
114
+ # Run inference
115
+ model.warmup(imgsz=(1 if pt or model.triton else bs, 3, *imgsz)) # warmup
116
+ seen, windows, dt = 0, [], (Profile(), Profile(), Profile())
117
+ for path, im, im0s, vid_cap, s in dataset:
118
+ with dt[0]:
119
+ im = torch.from_numpy(im).to(model.device)
120
+ im = im.half() if model.fp16 else im.float() # uint8 to fp16/32
121
+ im /= 255 # 0 - 255 to 0.0 - 1.0
122
+ if len(im.shape) == 3:
123
+ im = im[None] # expand for batch dim
124
+
125
+ # Inference
126
+ with dt[1]:
127
+ visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False
128
+ pred = model(im, augment=augment, visualize=visualize)
129
+
130
+ # NMS
131
+ with dt[2]:
132
+ pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
133
+
134
+ # Second-stage classifier (optional)
135
+ # pred = utils.general.apply_classifier(pred, classifier_model, im, im0s)
136
+
137
+ # Process predictions
138
+ for i, det in enumerate(pred): # per image
139
+ seen += 1
140
+ if webcam: # batch_size >= 1
141
+ p, im0, frame = path[i], im0s[i].copy(), dataset.count
142
+ s += f'{i}: '
143
+ else:
144
+ p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0)
145
+
146
+ p = Path(p) # to Path
147
+ save_path = str(save_dir / p.name) # im.jpg
148
+ txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # im.txt
149
+ s += '%gx%g ' % im.shape[2:] # print string
150
+ gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
151
+ imc = im0.copy() if save_crop else im0 # for save_crop
152
+ annotator = Annotator(im0, line_width=line_thickness, example=str(names))
153
+ if len(det):
154
+ # Rescale boxes from img_size to im0 size
155
+ det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round()
156
+
157
+ # Print results
158
+ for c in det[:, 5].unique():
159
+ n = (det[:, 5] == c).sum() # detections per class
160
+ s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
161
+
162
+ # Write results
163
+ for *xyxy, conf, cls in reversed(det):
164
+ if save_txt: # Write to file
165
+ xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
166
+ line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
167
+ with open(f'{txt_path}.txt', 'a') as f:
168
+ f.write(('%g ' * len(line)).rstrip() % line + '\n')
169
+
170
+ if save_img or save_crop or view_img: # Add bbox to image
171
+ c = int(cls) # integer class
172
+ label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}')
173
+ annotator.box_label(xyxy, label, color=colors(c, True))
174
+ if save_crop:
175
+ ###changed part###
176
+ xydata = str(xyxy).replace("[tensor(", "x")
177
+ xydata = str(xydata).replace("tensor(", "y",1)
178
+ xydata = str(xydata).replace("tensor(", "w",1)
179
+ xydata = str(xydata).replace("tensor(", "h",1)
180
+ xydata = str(xydata).replace("]", "_",1)
181
+ xydata = str(xydata).replace(".), ", "")
182
+ xydata = str(xydata).replace(".)", "")
183
+ #str.replace("tensor", "_")
184
+ save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{xydata}{p.stem}.jpg', BGR=True)
185
+ ###changed part###
186
+
187
+ # Stream results
188
+ im0 = annotator.result()
189
+ if view_img:
190
+ if platform.system() == 'Linux' and p not in windows:
191
+ windows.append(p)
192
+ cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO) # allow window resize (Linux)
193
+ cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0])
194
+ cv2.imshow(str(p), im0)
195
+ cv2.waitKey(1) # 1 millisecond
196
+
197
+ # Save results (image with detections)
198
+ if save_img:
199
+ if dataset.mode == 'image':
200
+ cv2.imwrite(save_path, im0)
201
+ else: # 'video' or 'stream'
202
+ if vid_path[i] != save_path: # new video
203
+ vid_path[i] = save_path
204
+ if isinstance(vid_writer[i], cv2.VideoWriter):
205
+ vid_writer[i].release() # release previous video writer
206
+ if vid_cap: # video
207
+ fps = vid_cap.get(cv2.CAP_PROP_FPS)
208
+ w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
209
+ h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
210
+ else: # stream
211
+ fps, w, h = 30, im0.shape[1], im0.shape[0]
212
+ save_path = str(Path(save_path).with_suffix('.mp4')) # force *.mp4 suffix on results videos
213
+ vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
214
+ vid_writer[i].write(im0)
215
+
216
+ # Print time (inference-only)
217
+ LOGGER.info(f"{s}{'' if len(det) else '(no detections), '}{dt[1].dt * 1E3:.1f}ms")
218
+
219
+ # Print results
220
+ t = tuple(x.t / seen * 1E3 for x in dt) # speeds per image
221
+ LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}' % t)
222
+ if save_txt or save_img:
223
+ s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
224
+ LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
225
+ if update:
226
+ strip_optimizer(weights[0]) # update model (to fix SourceChangeWarning)
227
+
228
+
229
+ def parse_opt():
230
+ parser = argparse.ArgumentParser()
231
+ parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s.pt', help='model path or triton URL')
232
+ parser.add_argument('--source', type=str, default=ROOT / 'data/images', help='file/dir/URL/glob/screen/0(webcam)')
233
+ parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='(optional) dataset.yaml path')
234
+ parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w')
235
+ parser.add_argument('--conf-thres', type=float, default=0.25, help='confidence threshold')
236
+ parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IoU threshold')
237
+ parser.add_argument('--max-det', type=int, default=1000, help='maximum detections per image')
238
+ parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
239
+ parser.add_argument('--view-img', action='store_true', help='show results')
240
+ parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
241
+ parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
242
+ parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes')
243
+ parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
244
+ parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --classes 0, or --classes 0 2 3')
245
+ parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
246
+ parser.add_argument('--augment', action='store_true', help='augmented inference')
247
+ parser.add_argument('--visualize', action='store_true', help='visualize features')
248
+ parser.add_argument('--update', action='store_true', help='update all models')
249
+ parser.add_argument('--project', default=ROOT / 'runs/detect', help='save results to project/name')
250
+ parser.add_argument('--name', default='exp', help='save results to project/name')
251
+ parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
252
+ parser.add_argument('--line-thickness', default=3, type=int, help='bounding box thickness (pixels)')
253
+ parser.add_argument('--hide-labels', default=False, action='store_true', help='hide labels')
254
+ parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences')
255
+ parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
256
+ parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
257
+ parser.add_argument('--vid-stride', type=int, default=1, help='video frame-rate stride')
258
+ opt = parser.parse_args()
259
+ opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand
260
+ print_args(vars(opt))
261
+ return opt
262
+
263
+
264
+ def main(opt):
265
+ check_requirements(ROOT / 'requirements.txt', exclude=('tensorboard', 'thop'))
266
+ run(**vars(opt))
267
+
268
+
269
+ if __name__ == '__main__':
270
+ opt = parse_opt()
271
+ main(opt)
TextDetection/export.py ADDED
@@ -0,0 +1,863 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 πŸš€ by Ultralytics, AGPL-3.0 license
2
+ """
3
+ Export a YOLOv5 PyTorch model to other formats. TensorFlow exports authored by https://github.com/zldrobit
4
+
5
+ Format | `export.py --include` | Model
6
+ --- | --- | ---
7
+ PyTorch | - | yolov5s.pt
8
+ TorchScript | `torchscript` | yolov5s.torchscript
9
+ ONNX | `onnx` | yolov5s.onnx
10
+ OpenVINO | `openvino` | yolov5s_openvino_model/
11
+ TensorRT | `engine` | yolov5s.engine
12
+ CoreML | `coreml` | yolov5s.mlmodel
13
+ TensorFlow SavedModel | `saved_model` | yolov5s_saved_model/
14
+ TensorFlow GraphDef | `pb` | yolov5s.pb
15
+ TensorFlow Lite | `tflite` | yolov5s.tflite
16
+ TensorFlow Edge TPU | `edgetpu` | yolov5s_edgetpu.tflite
17
+ TensorFlow.js | `tfjs` | yolov5s_web_model/
18
+ PaddlePaddle | `paddle` | yolov5s_paddle_model/
19
+
20
+ Requirements:
21
+ $ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime openvino-dev tensorflow-cpu # CPU
22
+ $ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime-gpu openvino-dev tensorflow # GPU
23
+
24
+ Usage:
25
+ $ python export.py --weights yolov5s.pt --include torchscript onnx openvino engine coreml tflite ...
26
+
27
+ Inference:
28
+ $ python detect.py --weights yolov5s.pt # PyTorch
29
+ yolov5s.torchscript # TorchScript
30
+ yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn
31
+ yolov5s_openvino_model # OpenVINO
32
+ yolov5s.engine # TensorRT
33
+ yolov5s.mlmodel # CoreML (macOS-only)
34
+ yolov5s_saved_model # TensorFlow SavedModel
35
+ yolov5s.pb # TensorFlow GraphDef
36
+ yolov5s.tflite # TensorFlow Lite
37
+ yolov5s_edgetpu.tflite # TensorFlow Edge TPU
38
+ yolov5s_paddle_model # PaddlePaddle
39
+
40
+ TensorFlow.js:
41
+ $ cd .. && git clone https://github.com/zldrobit/tfjs-yolov5-example.git && cd tfjs-yolov5-example
42
+ $ npm install
43
+ $ ln -s ../../yolov5/yolov5s_web_model public/yolov5s_web_model
44
+ $ npm start
45
+ """
46
+
47
+ import argparse
48
+ import contextlib
49
+ import json
50
+ import os
51
+ import platform
52
+ import re
53
+ import subprocess
54
+ import sys
55
+ import time
56
+ import warnings
57
+ from pathlib import Path
58
+
59
+ import pandas as pd
60
+ import torch
61
+ from torch.utils.mobile_optimizer import optimize_for_mobile
62
+
63
+ FILE = Path(__file__).resolve()
64
+ ROOT = FILE.parents[0] # YOLOv5 root directory
65
+ if str(ROOT) not in sys.path:
66
+ sys.path.append(str(ROOT)) # add ROOT to PATH
67
+ if platform.system() != 'Windows':
68
+ ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
69
+
70
+ from models.experimental import attempt_load
71
+ from models.yolo import ClassificationModel, Detect, DetectionModel, SegmentationModel
72
+ from utils.dataloaders import LoadImages
73
+ from utils.general import (LOGGER, Profile, check_dataset, check_img_size, check_requirements, check_version,
74
+ check_yaml, colorstr, file_size, get_default_args, print_args, url2file, yaml_save)
75
+ from utils.torch_utils import select_device, smart_inference_mode
76
+
77
+ MACOS = platform.system() == 'Darwin' # macOS environment
78
+
79
+
80
+ class iOSModel(torch.nn.Module):
81
+
82
+ def __init__(self, model, im):
83
+ super().__init__()
84
+ b, c, h, w = im.shape # batch, channel, height, width
85
+ self.model = model
86
+ self.nc = model.nc # number of classes
87
+ if w == h:
88
+ self.normalize = 1. / w
89
+ else:
90
+ self.normalize = torch.tensor([1. / w, 1. / h, 1. / w, 1. / h]) # broadcast (slower, smaller)
91
+ # np = model(im)[0].shape[1] # number of points
92
+ # self.normalize = torch.tensor([1. / w, 1. / h, 1. / w, 1. / h]).expand(np, 4) # explicit (faster, larger)
93
+
94
+ def forward(self, x):
95
+ xywh, conf, cls = self.model(x)[0].squeeze().split((4, 1, self.nc), 1)
96
+ return cls * conf, xywh * self.normalize # confidence (3780, 80), coordinates (3780, 4)
97
+
98
+
99
+ def export_formats():
100
+ # YOLOv5 export formats
101
+ x = [
102
+ ['PyTorch', '-', '.pt', True, True],
103
+ ['TorchScript', 'torchscript', '.torchscript', True, True],
104
+ ['ONNX', 'onnx', '.onnx', True, True],
105
+ ['OpenVINO', 'openvino', '_openvino_model', True, False],
106
+ ['TensorRT', 'engine', '.engine', False, True],
107
+ ['CoreML', 'coreml', '.mlmodel', True, False],
108
+ ['TensorFlow SavedModel', 'saved_model', '_saved_model', True, True],
109
+ ['TensorFlow GraphDef', 'pb', '.pb', True, True],
110
+ ['TensorFlow Lite', 'tflite', '.tflite', True, False],
111
+ ['TensorFlow Edge TPU', 'edgetpu', '_edgetpu.tflite', False, False],
112
+ ['TensorFlow.js', 'tfjs', '_web_model', False, False],
113
+ ['PaddlePaddle', 'paddle', '_paddle_model', True, True], ]
114
+ return pd.DataFrame(x, columns=['Format', 'Argument', 'Suffix', 'CPU', 'GPU'])
115
+
116
+
117
+ def try_export(inner_func):
118
+ # YOLOv5 export decorator, i..e @try_export
119
+ inner_args = get_default_args(inner_func)
120
+
121
+ def outer_func(*args, **kwargs):
122
+ prefix = inner_args['prefix']
123
+ try:
124
+ with Profile() as dt:
125
+ f, model = inner_func(*args, **kwargs)
126
+ LOGGER.info(f'{prefix} export success βœ… {dt.t:.1f}s, saved as {f} ({file_size(f):.1f} MB)')
127
+ return f, model
128
+ except Exception as e:
129
+ LOGGER.info(f'{prefix} export failure ❌ {dt.t:.1f}s: {e}')
130
+ return None, None
131
+
132
+ return outer_func
133
+
134
+
135
+ @try_export
136
+ def export_torchscript(model, im, file, optimize, prefix=colorstr('TorchScript:')):
137
+ # YOLOv5 TorchScript model export
138
+ LOGGER.info(f'\n{prefix} starting export with torch {torch.__version__}...')
139
+ f = file.with_suffix('.torchscript')
140
+
141
+ ts = torch.jit.trace(model, im, strict=False)
142
+ d = {'shape': im.shape, 'stride': int(max(model.stride)), 'names': model.names}
143
+ extra_files = {'config.txt': json.dumps(d)} # torch._C.ExtraFilesMap()
144
+ if optimize: # https://pytorch.org/tutorials/recipes/mobile_interpreter.html
145
+ optimize_for_mobile(ts)._save_for_lite_interpreter(str(f), _extra_files=extra_files)
146
+ else:
147
+ ts.save(str(f), _extra_files=extra_files)
148
+ return f, None
149
+
150
+
151
+ @try_export
152
+ def export_onnx(model, im, file, opset, dynamic, simplify, prefix=colorstr('ONNX:')):
153
+ # YOLOv5 ONNX export
154
+ check_requirements('onnx>=1.12.0')
155
+ import onnx
156
+
157
+ LOGGER.info(f'\n{prefix} starting export with onnx {onnx.__version__}...')
158
+ f = file.with_suffix('.onnx')
159
+
160
+ output_names = ['output0', 'output1'] if isinstance(model, SegmentationModel) else ['output0']
161
+ if dynamic:
162
+ dynamic = {'images': {0: 'batch', 2: 'height', 3: 'width'}} # shape(1,3,640,640)
163
+ if isinstance(model, SegmentationModel):
164
+ dynamic['output0'] = {0: 'batch', 1: 'anchors'} # shape(1,25200,85)
165
+ dynamic['output1'] = {0: 'batch', 2: 'mask_height', 3: 'mask_width'} # shape(1,32,160,160)
166
+ elif isinstance(model, DetectionModel):
167
+ dynamic['output0'] = {0: 'batch', 1: 'anchors'} # shape(1,25200,85)
168
+
169
+ torch.onnx.export(
170
+ model.cpu() if dynamic else model, # --dynamic only compatible with cpu
171
+ im.cpu() if dynamic else im,
172
+ f,
173
+ verbose=False,
174
+ opset_version=opset,
175
+ do_constant_folding=True, # WARNING: DNN inference with torch>=1.12 may require do_constant_folding=False
176
+ input_names=['images'],
177
+ output_names=output_names,
178
+ dynamic_axes=dynamic or None)
179
+
180
+ # Checks
181
+ model_onnx = onnx.load(f) # load onnx model
182
+ onnx.checker.check_model(model_onnx) # check onnx model
183
+
184
+ # Metadata
185
+ d = {'stride': int(max(model.stride)), 'names': model.names}
186
+ for k, v in d.items():
187
+ meta = model_onnx.metadata_props.add()
188
+ meta.key, meta.value = k, str(v)
189
+ onnx.save(model_onnx, f)
190
+
191
+ # Simplify
192
+ if simplify:
193
+ try:
194
+ cuda = torch.cuda.is_available()
195
+ check_requirements(('onnxruntime-gpu' if cuda else 'onnxruntime', 'onnx-simplifier>=0.4.1'))
196
+ import onnxsim
197
+
198
+ LOGGER.info(f'{prefix} simplifying with onnx-simplifier {onnxsim.__version__}...')
199
+ model_onnx, check = onnxsim.simplify(model_onnx)
200
+ assert check, 'assert check failed'
201
+ onnx.save(model_onnx, f)
202
+ except Exception as e:
203
+ LOGGER.info(f'{prefix} simplifier failure: {e}')
204
+ return f, model_onnx
205
+
206
+
207
+ @try_export
208
+ def export_openvino(file, metadata, half, int8, data, prefix=colorstr('OpenVINO:')):
209
+ # YOLOv5 OpenVINO export
210
+ check_requirements('openvino-dev>=2022.3') # requires openvino-dev: https://pypi.org/project/openvino-dev/
211
+ import openvino.runtime as ov # noqa
212
+ from openvino.tools import mo # noqa
213
+
214
+ LOGGER.info(f'\n{prefix} starting export with openvino {ov.__version__}...')
215
+ f = str(file).replace(file.suffix, f'_openvino_model{os.sep}')
216
+ f_onnx = file.with_suffix('.onnx')
217
+ f_ov = str(Path(f) / file.with_suffix('.xml').name)
218
+ if int8:
219
+ check_requirements('nncf')
220
+ import nncf
221
+ import numpy as np
222
+ from openvino.runtime import Core
223
+
224
+ from utils.dataloaders import create_dataloader
225
+ core = Core()
226
+ onnx_model = core.read_model(f_onnx) # export
227
+
228
+ def prepare_input_tensor(image: np.ndarray):
229
+ input_tensor = image.astype(np.float32) # uint8 to fp16/32
230
+ input_tensor /= 255.0 # 0 - 255 to 0.0 - 1.0
231
+
232
+ if input_tensor.ndim == 3:
233
+ input_tensor = np.expand_dims(input_tensor, 0)
234
+ return input_tensor
235
+
236
+ def gen_dataloader(yaml_path, task='train', imgsz=640, workers=4):
237
+ data_yaml = check_yaml(yaml_path)
238
+ data = check_dataset(data_yaml)
239
+ dataloader = create_dataloader(data[task],
240
+ imgsz=imgsz,
241
+ batch_size=1,
242
+ stride=32,
243
+ pad=0.5,
244
+ single_cls=False,
245
+ rect=False,
246
+ workers=workers)[0]
247
+ return dataloader
248
+
249
+ # noqa: F811
250
+
251
+ def transform_fn(data_item):
252
+ """
253
+ Quantization transform function. Extracts and preprocess input data from dataloader item for quantization.
254
+ Parameters:
255
+ data_item: Tuple with data item produced by DataLoader during iteration
256
+ Returns:
257
+ input_tensor: Input data for quantization
258
+ """
259
+ img = data_item[0].numpy()
260
+ input_tensor = prepare_input_tensor(img)
261
+ return input_tensor
262
+
263
+ ds = gen_dataloader(data)
264
+ quantization_dataset = nncf.Dataset(ds, transform_fn)
265
+ ov_model = nncf.quantize(onnx_model, quantization_dataset, preset=nncf.QuantizationPreset.MIXED)
266
+ else:
267
+ ov_model = mo.convert_model(f_onnx, model_name=file.stem, framework='onnx', compress_to_fp16=half) # export
268
+
269
+ ov.serialize(ov_model, f_ov) # save
270
+ yaml_save(Path(f) / file.with_suffix('.yaml').name, metadata) # add metadata.yaml
271
+ return f, None
272
+
273
+
274
+ @try_export
275
+ def export_paddle(model, im, file, metadata, prefix=colorstr('PaddlePaddle:')):
276
+ # YOLOv5 Paddle export
277
+ check_requirements(('paddlepaddle', 'x2paddle'))
278
+ import x2paddle
279
+ from x2paddle.convert import pytorch2paddle
280
+
281
+ LOGGER.info(f'\n{prefix} starting export with X2Paddle {x2paddle.__version__}...')
282
+ f = str(file).replace('.pt', f'_paddle_model{os.sep}')
283
+
284
+ pytorch2paddle(module=model, save_dir=f, jit_type='trace', input_examples=[im]) # export
285
+ yaml_save(Path(f) / file.with_suffix('.yaml').name, metadata) # add metadata.yaml
286
+ return f, None
287
+
288
+
289
+ @try_export
290
+ def export_coreml(model, im, file, int8, half, nms, prefix=colorstr('CoreML:')):
291
+ # YOLOv5 CoreML export
292
+ check_requirements('coremltools')
293
+ import coremltools as ct
294
+
295
+ LOGGER.info(f'\n{prefix} starting export with coremltools {ct.__version__}...')
296
+ f = file.with_suffix('.mlmodel')
297
+
298
+ if nms:
299
+ model = iOSModel(model, im)
300
+ ts = torch.jit.trace(model, im, strict=False) # TorchScript model
301
+ ct_model = ct.convert(ts, inputs=[ct.ImageType('image', shape=im.shape, scale=1 / 255, bias=[0, 0, 0])])
302
+ bits, mode = (8, 'kmeans_lut') if int8 else (16, 'linear') if half else (32, None)
303
+ if bits < 32:
304
+ if MACOS: # quantization only supported on macOS
305
+ with warnings.catch_warnings():
306
+ warnings.filterwarnings('ignore', category=DeprecationWarning) # suppress numpy==1.20 float warning
307
+ ct_model = ct.models.neural_network.quantization_utils.quantize_weights(ct_model, bits, mode)
308
+ else:
309
+ print(f'{prefix} quantization only supported on macOS, skipping...')
310
+ ct_model.save(f)
311
+ return f, ct_model
312
+
313
+
314
+ @try_export
315
+ def export_engine(model, im, file, half, dynamic, simplify, workspace=4, verbose=False, prefix=colorstr('TensorRT:')):
316
+ # YOLOv5 TensorRT export https://developer.nvidia.com/tensorrt
317
+ assert im.device.type != 'cpu', 'export running on CPU but must be on GPU, i.e. `python export.py --device 0`'
318
+ try:
319
+ import tensorrt as trt
320
+ except Exception:
321
+ if platform.system() == 'Linux':
322
+ check_requirements('nvidia-tensorrt', cmds='-U --index-url https://pypi.ngc.nvidia.com')
323
+ import tensorrt as trt
324
+
325
+ if trt.__version__[0] == '7': # TensorRT 7 handling https://github.com/ultralytics/yolov5/issues/6012
326
+ grid = model.model[-1].anchor_grid
327
+ model.model[-1].anchor_grid = [a[..., :1, :1, :] for a in grid]
328
+ export_onnx(model, im, file, 12, dynamic, simplify) # opset 12
329
+ model.model[-1].anchor_grid = grid
330
+ else: # TensorRT >= 8
331
+ check_version(trt.__version__, '8.0.0', hard=True) # require tensorrt>=8.0.0
332
+ export_onnx(model, im, file, 12, dynamic, simplify) # opset 12
333
+ onnx = file.with_suffix('.onnx')
334
+
335
+ LOGGER.info(f'\n{prefix} starting export with TensorRT {trt.__version__}...')
336
+ assert onnx.exists(), f'failed to export ONNX file: {onnx}'
337
+ f = file.with_suffix('.engine') # TensorRT engine file
338
+ logger = trt.Logger(trt.Logger.INFO)
339
+ if verbose:
340
+ logger.min_severity = trt.Logger.Severity.VERBOSE
341
+
342
+ builder = trt.Builder(logger)
343
+ config = builder.create_builder_config()
344
+ config.max_workspace_size = workspace * 1 << 30
345
+ # config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, workspace << 30) # fix TRT 8.4 deprecation notice
346
+
347
+ flag = (1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))
348
+ network = builder.create_network(flag)
349
+ parser = trt.OnnxParser(network, logger)
350
+ if not parser.parse_from_file(str(onnx)):
351
+ raise RuntimeError(f'failed to load ONNX file: {onnx}')
352
+
353
+ inputs = [network.get_input(i) for i in range(network.num_inputs)]
354
+ outputs = [network.get_output(i) for i in range(network.num_outputs)]
355
+ for inp in inputs:
356
+ LOGGER.info(f'{prefix} input "{inp.name}" with shape{inp.shape} {inp.dtype}')
357
+ for out in outputs:
358
+ LOGGER.info(f'{prefix} output "{out.name}" with shape{out.shape} {out.dtype}')
359
+
360
+ if dynamic:
361
+ if im.shape[0] <= 1:
362
+ LOGGER.warning(f'{prefix} WARNING ⚠️ --dynamic model requires maximum --batch-size argument')
363
+ profile = builder.create_optimization_profile()
364
+ for inp in inputs:
365
+ profile.set_shape(inp.name, (1, *im.shape[1:]), (max(1, im.shape[0] // 2), *im.shape[1:]), im.shape)
366
+ config.add_optimization_profile(profile)
367
+
368
+ LOGGER.info(f'{prefix} building FP{16 if builder.platform_has_fast_fp16 and half else 32} engine as {f}')
369
+ if builder.platform_has_fast_fp16 and half:
370
+ config.set_flag(trt.BuilderFlag.FP16)
371
+ with builder.build_engine(network, config) as engine, open(f, 'wb') as t:
372
+ t.write(engine.serialize())
373
+ return f, None
374
+
375
+
376
+ @try_export
377
+ def export_saved_model(model,
378
+ im,
379
+ file,
380
+ dynamic,
381
+ tf_nms=False,
382
+ agnostic_nms=False,
383
+ topk_per_class=100,
384
+ topk_all=100,
385
+ iou_thres=0.45,
386
+ conf_thres=0.25,
387
+ keras=False,
388
+ prefix=colorstr('TensorFlow SavedModel:')):
389
+ # YOLOv5 TensorFlow SavedModel export
390
+ try:
391
+ import tensorflow as tf
392
+ except Exception:
393
+ check_requirements(f"tensorflow{'' if torch.cuda.is_available() else '-macos' if MACOS else '-cpu'}")
394
+ import tensorflow as tf
395
+ from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2
396
+
397
+ from models.tf import TFModel
398
+
399
+ LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
400
+ f = str(file).replace('.pt', '_saved_model')
401
+ batch_size, ch, *imgsz = list(im.shape) # BCHW
402
+
403
+ tf_model = TFModel(cfg=model.yaml, model=model, nc=model.nc, imgsz=imgsz)
404
+ im = tf.zeros((batch_size, *imgsz, ch)) # BHWC order for TensorFlow
405
+ _ = tf_model.predict(im, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres)
406
+ inputs = tf.keras.Input(shape=(*imgsz, ch), batch_size=None if dynamic else batch_size)
407
+ outputs = tf_model.predict(inputs, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres)
408
+ keras_model = tf.keras.Model(inputs=inputs, outputs=outputs)
409
+ keras_model.trainable = False
410
+ keras_model.summary()
411
+ if keras:
412
+ keras_model.save(f, save_format='tf')
413
+ else:
414
+ spec = tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype)
415
+ m = tf.function(lambda x: keras_model(x)) # full model
416
+ m = m.get_concrete_function(spec)
417
+ frozen_func = convert_variables_to_constants_v2(m)
418
+ tfm = tf.Module()
419
+ tfm.__call__ = tf.function(lambda x: frozen_func(x)[:4] if tf_nms else frozen_func(x), [spec])
420
+ tfm.__call__(im)
421
+ tf.saved_model.save(tfm,
422
+ f,
423
+ options=tf.saved_model.SaveOptions(experimental_custom_gradients=False) if check_version(
424
+ tf.__version__, '2.6') else tf.saved_model.SaveOptions())
425
+ return f, keras_model
426
+
427
+
428
+ @try_export
429
+ def export_pb(keras_model, file, prefix=colorstr('TensorFlow GraphDef:')):
430
+ # YOLOv5 TensorFlow GraphDef *.pb export https://github.com/leimao/Frozen_Graph_TensorFlow
431
+ import tensorflow as tf
432
+ from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2
433
+
434
+ LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
435
+ f = file.with_suffix('.pb')
436
+
437
+ m = tf.function(lambda x: keras_model(x)) # full model
438
+ m = m.get_concrete_function(tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype))
439
+ frozen_func = convert_variables_to_constants_v2(m)
440
+ frozen_func.graph.as_graph_def()
441
+ tf.io.write_graph(graph_or_graph_def=frozen_func.graph, logdir=str(f.parent), name=f.name, as_text=False)
442
+ return f, None
443
+
444
+
445
+ @try_export
446
+ def export_tflite(keras_model, im, file, int8, data, nms, agnostic_nms, prefix=colorstr('TensorFlow Lite:')):
447
+ # YOLOv5 TensorFlow Lite export
448
+ import tensorflow as tf
449
+
450
+ LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
451
+ batch_size, ch, *imgsz = list(im.shape) # BCHW
452
+ f = str(file).replace('.pt', '-fp16.tflite')
453
+
454
+ converter = tf.lite.TFLiteConverter.from_keras_model(keras_model)
455
+ converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS]
456
+ converter.target_spec.supported_types = [tf.float16]
457
+ converter.optimizations = [tf.lite.Optimize.DEFAULT]
458
+ if int8:
459
+ from models.tf import representative_dataset_gen
460
+ dataset = LoadImages(check_dataset(check_yaml(data))['train'], img_size=imgsz, auto=False)
461
+ converter.representative_dataset = lambda: representative_dataset_gen(dataset, ncalib=100)
462
+ converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]
463
+ converter.target_spec.supported_types = []
464
+ converter.inference_input_type = tf.uint8 # or tf.int8
465
+ converter.inference_output_type = tf.uint8 # or tf.int8
466
+ converter.experimental_new_quantizer = True
467
+ f = str(file).replace('.pt', '-int8.tflite')
468
+ if nms or agnostic_nms:
469
+ converter.target_spec.supported_ops.append(tf.lite.OpsSet.SELECT_TF_OPS)
470
+
471
+ tflite_model = converter.convert()
472
+ open(f, 'wb').write(tflite_model)
473
+ return f, None
474
+
475
+
476
+ @try_export
477
+ def export_edgetpu(file, prefix=colorstr('Edge TPU:')):
478
+ # YOLOv5 Edge TPU export https://coral.ai/docs/edgetpu/models-intro/
479
+ cmd = 'edgetpu_compiler --version'
480
+ help_url = 'https://coral.ai/docs/edgetpu/compiler/'
481
+ assert platform.system() == 'Linux', f'export only supported on Linux. See {help_url}'
482
+ if subprocess.run(f'{cmd} > /dev/null 2>&1', shell=True).returncode != 0:
483
+ LOGGER.info(f'\n{prefix} export requires Edge TPU compiler. Attempting install from {help_url}')
484
+ sudo = subprocess.run('sudo --version >/dev/null', shell=True).returncode == 0 # sudo installed on system
485
+ for c in (
486
+ 'curl https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add -',
487
+ 'echo "deb https://packages.cloud.google.com/apt coral-edgetpu-stable main" | sudo tee /etc/apt/sources.list.d/coral-edgetpu.list',
488
+ 'sudo apt-get update', 'sudo apt-get install edgetpu-compiler'):
489
+ subprocess.run(c if sudo else c.replace('sudo ', ''), shell=True, check=True)
490
+ ver = subprocess.run(cmd, shell=True, capture_output=True, check=True).stdout.decode().split()[-1]
491
+
492
+ LOGGER.info(f'\n{prefix} starting export with Edge TPU compiler {ver}...')
493
+ f = str(file).replace('.pt', '-int8_edgetpu.tflite') # Edge TPU model
494
+ f_tfl = str(file).replace('.pt', '-int8.tflite') # TFLite model
495
+
496
+ subprocess.run([
497
+ 'edgetpu_compiler',
498
+ '-s',
499
+ '-d',
500
+ '-k',
501
+ '10',
502
+ '--out_dir',
503
+ str(file.parent),
504
+ f_tfl, ], check=True)
505
+ return f, None
506
+
507
+
508
+ @try_export
509
+ def export_tfjs(file, int8, prefix=colorstr('TensorFlow.js:')):
510
+ # YOLOv5 TensorFlow.js export
511
+ check_requirements('tensorflowjs')
512
+ import tensorflowjs as tfjs
513
+
514
+ LOGGER.info(f'\n{prefix} starting export with tensorflowjs {tfjs.__version__}...')
515
+ f = str(file).replace('.pt', '_web_model') # js dir
516
+ f_pb = file.with_suffix('.pb') # *.pb path
517
+ f_json = f'{f}/model.json' # *.json path
518
+
519
+ args = [
520
+ 'tensorflowjs_converter',
521
+ '--input_format=tf_frozen_model',
522
+ '--quantize_uint8' if int8 else '',
523
+ '--output_node_names=Identity,Identity_1,Identity_2,Identity_3',
524
+ str(f_pb),
525
+ str(f), ]
526
+ subprocess.run([arg for arg in args if arg], check=True)
527
+
528
+ json = Path(f_json).read_text()
529
+ with open(f_json, 'w') as j: # sort JSON Identity_* in ascending order
530
+ subst = re.sub(
531
+ r'{"outputs": {"Identity.?.?": {"name": "Identity.?.?"}, '
532
+ r'"Identity.?.?": {"name": "Identity.?.?"}, '
533
+ r'"Identity.?.?": {"name": "Identity.?.?"}, '
534
+ r'"Identity.?.?": {"name": "Identity.?.?"}}}', r'{"outputs": {"Identity": {"name": "Identity"}, '
535
+ r'"Identity_1": {"name": "Identity_1"}, '
536
+ r'"Identity_2": {"name": "Identity_2"}, '
537
+ r'"Identity_3": {"name": "Identity_3"}}}', json)
538
+ j.write(subst)
539
+ return f, None
540
+
541
+
542
+ def add_tflite_metadata(file, metadata, num_outputs):
543
+ # Add metadata to *.tflite models per https://www.tensorflow.org/lite/models/convert/metadata
544
+ with contextlib.suppress(ImportError):
545
+ # check_requirements('tflite_support')
546
+ from tflite_support import flatbuffers
547
+ from tflite_support import metadata as _metadata
548
+ from tflite_support import metadata_schema_py_generated as _metadata_fb
549
+
550
+ tmp_file = Path('/tmp/meta.txt')
551
+ with open(tmp_file, 'w') as meta_f:
552
+ meta_f.write(str(metadata))
553
+
554
+ model_meta = _metadata_fb.ModelMetadataT()
555
+ label_file = _metadata_fb.AssociatedFileT()
556
+ label_file.name = tmp_file.name
557
+ model_meta.associatedFiles = [label_file]
558
+
559
+ subgraph = _metadata_fb.SubGraphMetadataT()
560
+ subgraph.inputTensorMetadata = [_metadata_fb.TensorMetadataT()]
561
+ subgraph.outputTensorMetadata = [_metadata_fb.TensorMetadataT()] * num_outputs
562
+ model_meta.subgraphMetadata = [subgraph]
563
+
564
+ b = flatbuffers.Builder(0)
565
+ b.Finish(model_meta.Pack(b), _metadata.MetadataPopulator.METADATA_FILE_IDENTIFIER)
566
+ metadata_buf = b.Output()
567
+
568
+ populator = _metadata.MetadataPopulator.with_model_file(file)
569
+ populator.load_metadata_buffer(metadata_buf)
570
+ populator.load_associated_files([str(tmp_file)])
571
+ populator.populate()
572
+ tmp_file.unlink()
573
+
574
+
575
+ def pipeline_coreml(model, im, file, names, y, prefix=colorstr('CoreML Pipeline:')):
576
+ # YOLOv5 CoreML pipeline
577
+ import coremltools as ct
578
+ from PIL import Image
579
+
580
+ print(f'{prefix} starting pipeline with coremltools {ct.__version__}...')
581
+ batch_size, ch, h, w = list(im.shape) # BCHW
582
+ t = time.time()
583
+
584
+ # YOLOv5 Output shapes
585
+ spec = model.get_spec()
586
+ out0, out1 = iter(spec.description.output)
587
+ if platform.system() == 'Darwin':
588
+ img = Image.new('RGB', (w, h)) # img(192 width, 320 height)
589
+ # img = torch.zeros((*opt.img_size, 3)).numpy() # img size(320,192,3) iDetection
590
+ out = model.predict({'image': img})
591
+ out0_shape, out1_shape = out[out0.name].shape, out[out1.name].shape
592
+ else: # linux and windows can not run model.predict(), get sizes from pytorch output y
593
+ s = tuple(y[0].shape)
594
+ out0_shape, out1_shape = (s[1], s[2] - 5), (s[1], 4) # (3780, 80), (3780, 4)
595
+
596
+ # Checks
597
+ nx, ny = spec.description.input[0].type.imageType.width, spec.description.input[0].type.imageType.height
598
+ na, nc = out0_shape
599
+ # na, nc = out0.type.multiArrayType.shape # number anchors, classes
600
+ assert len(names) == nc, f'{len(names)} names found for nc={nc}' # check
601
+
602
+ # Define output shapes (missing)
603
+ out0.type.multiArrayType.shape[:] = out0_shape # (3780, 80)
604
+ out1.type.multiArrayType.shape[:] = out1_shape # (3780, 4)
605
+ # spec.neuralNetwork.preprocessing[0].featureName = '0'
606
+
607
+ # Flexible input shapes
608
+ # from coremltools.models.neural_network import flexible_shape_utils
609
+ # s = [] # shapes
610
+ # s.append(flexible_shape_utils.NeuralNetworkImageSize(320, 192))
611
+ # s.append(flexible_shape_utils.NeuralNetworkImageSize(640, 384)) # (height, width)
612
+ # flexible_shape_utils.add_enumerated_image_sizes(spec, feature_name='image', sizes=s)
613
+ # r = flexible_shape_utils.NeuralNetworkImageSizeRange() # shape ranges
614
+ # r.add_height_range((192, 640))
615
+ # r.add_width_range((192, 640))
616
+ # flexible_shape_utils.update_image_size_range(spec, feature_name='image', size_range=r)
617
+
618
+ # Print
619
+ print(spec.description)
620
+
621
+ # Model from spec
622
+ model = ct.models.MLModel(spec)
623
+
624
+ # 3. Create NMS protobuf
625
+ nms_spec = ct.proto.Model_pb2.Model()
626
+ nms_spec.specificationVersion = 5
627
+ for i in range(2):
628
+ decoder_output = model._spec.description.output[i].SerializeToString()
629
+ nms_spec.description.input.add()
630
+ nms_spec.description.input[i].ParseFromString(decoder_output)
631
+ nms_spec.description.output.add()
632
+ nms_spec.description.output[i].ParseFromString(decoder_output)
633
+
634
+ nms_spec.description.output[0].name = 'confidence'
635
+ nms_spec.description.output[1].name = 'coordinates'
636
+
637
+ output_sizes = [nc, 4]
638
+ for i in range(2):
639
+ ma_type = nms_spec.description.output[i].type.multiArrayType
640
+ ma_type.shapeRange.sizeRanges.add()
641
+ ma_type.shapeRange.sizeRanges[0].lowerBound = 0
642
+ ma_type.shapeRange.sizeRanges[0].upperBound = -1
643
+ ma_type.shapeRange.sizeRanges.add()
644
+ ma_type.shapeRange.sizeRanges[1].lowerBound = output_sizes[i]
645
+ ma_type.shapeRange.sizeRanges[1].upperBound = output_sizes[i]
646
+ del ma_type.shape[:]
647
+
648
+ nms = nms_spec.nonMaximumSuppression
649
+ nms.confidenceInputFeatureName = out0.name # 1x507x80
650
+ nms.coordinatesInputFeatureName = out1.name # 1x507x4
651
+ nms.confidenceOutputFeatureName = 'confidence'
652
+ nms.coordinatesOutputFeatureName = 'coordinates'
653
+ nms.iouThresholdInputFeatureName = 'iouThreshold'
654
+ nms.confidenceThresholdInputFeatureName = 'confidenceThreshold'
655
+ nms.iouThreshold = 0.45
656
+ nms.confidenceThreshold = 0.25
657
+ nms.pickTop.perClass = True
658
+ nms.stringClassLabels.vector.extend(names.values())
659
+ nms_model = ct.models.MLModel(nms_spec)
660
+
661
+ # 4. Pipeline models together
662
+ pipeline = ct.models.pipeline.Pipeline(input_features=[('image', ct.models.datatypes.Array(3, ny, nx)),
663
+ ('iouThreshold', ct.models.datatypes.Double()),
664
+ ('confidenceThreshold', ct.models.datatypes.Double())],
665
+ output_features=['confidence', 'coordinates'])
666
+ pipeline.add_model(model)
667
+ pipeline.add_model(nms_model)
668
+
669
+ # Correct datatypes
670
+ pipeline.spec.description.input[0].ParseFromString(model._spec.description.input[0].SerializeToString())
671
+ pipeline.spec.description.output[0].ParseFromString(nms_model._spec.description.output[0].SerializeToString())
672
+ pipeline.spec.description.output[1].ParseFromString(nms_model._spec.description.output[1].SerializeToString())
673
+
674
+ # Update metadata
675
+ pipeline.spec.specificationVersion = 5
676
+ pipeline.spec.description.metadata.versionString = 'https://github.com/ultralytics/yolov5'
677
+ pipeline.spec.description.metadata.shortDescription = 'https://github.com/ultralytics/yolov5'
678
+ pipeline.spec.description.metadata.author = '[email protected]'
679
+ pipeline.spec.description.metadata.license = 'https://github.com/ultralytics/yolov5/blob/master/LICENSE'
680
+ pipeline.spec.description.metadata.userDefined.update({
681
+ 'classes': ','.join(names.values()),
682
+ 'iou_threshold': str(nms.iouThreshold),
683
+ 'confidence_threshold': str(nms.confidenceThreshold)})
684
+
685
+ # Save the model
686
+ f = file.with_suffix('.mlmodel') # filename
687
+ model = ct.models.MLModel(pipeline.spec)
688
+ model.input_description['image'] = 'Input image'
689
+ model.input_description['iouThreshold'] = f'(optional) IOU Threshold override (default: {nms.iouThreshold})'
690
+ model.input_description['confidenceThreshold'] = \
691
+ f'(optional) Confidence Threshold override (default: {nms.confidenceThreshold})'
692
+ model.output_description['confidence'] = 'Boxes Γ— Class confidence (see user-defined metadata "classes")'
693
+ model.output_description['coordinates'] = 'Boxes Γ— [x, y, width, height] (relative to image size)'
694
+ model.save(f) # pipelined
695
+ print(f'{prefix} pipeline success ({time.time() - t:.2f}s), saved as {f} ({file_size(f):.1f} MB)')
696
+
697
+
698
+ @smart_inference_mode()
699
+ def run(
700
+ data=ROOT / 'data/coco128.yaml', # 'dataset.yaml path'
701
+ weights=ROOT / 'yolov5s.pt', # weights path
702
+ imgsz=(640, 640), # image (height, width)
703
+ batch_size=1, # batch size
704
+ device='cpu', # cuda device, i.e. 0 or 0,1,2,3 or cpu
705
+ include=('torchscript', 'onnx'), # include formats
706
+ half=False, # FP16 half-precision export
707
+ inplace=False, # set YOLOv5 Detect() inplace=True
708
+ keras=False, # use Keras
709
+ optimize=False, # TorchScript: optimize for mobile
710
+ int8=False, # CoreML/TF INT8 quantization
711
+ dynamic=False, # ONNX/TF/TensorRT: dynamic axes
712
+ simplify=False, # ONNX: simplify model
713
+ opset=12, # ONNX: opset version
714
+ verbose=False, # TensorRT: verbose log
715
+ workspace=4, # TensorRT: workspace size (GB)
716
+ nms=False, # TF: add NMS to model
717
+ agnostic_nms=False, # TF: add agnostic NMS to model
718
+ topk_per_class=100, # TF.js NMS: topk per class to keep
719
+ topk_all=100, # TF.js NMS: topk for all classes to keep
720
+ iou_thres=0.45, # TF.js NMS: IoU threshold
721
+ conf_thres=0.25, # TF.js NMS: confidence threshold
722
+ ):
723
+ t = time.time()
724
+ include = [x.lower() for x in include] # to lowercase
725
+ fmts = tuple(export_formats()['Argument'][1:]) # --include arguments
726
+ flags = [x in include for x in fmts]
727
+ assert sum(flags) == len(include), f'ERROR: Invalid --include {include}, valid --include arguments are {fmts}'
728
+ jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle = flags # export booleans
729
+ file = Path(url2file(weights) if str(weights).startswith(('http:/', 'https:/')) else weights) # PyTorch weights
730
+
731
+ # Load PyTorch model
732
+ device = select_device(device)
733
+ if half:
734
+ assert device.type != 'cpu' or coreml, '--half only compatible with GPU export, i.e. use --device 0'
735
+ assert not dynamic, '--half not compatible with --dynamic, i.e. use either --half or --dynamic but not both'
736
+ model = attempt_load(weights, device=device, inplace=True, fuse=True) # load FP32 model
737
+
738
+ # Checks
739
+ imgsz *= 2 if len(imgsz) == 1 else 1 # expand
740
+ if optimize:
741
+ assert device.type == 'cpu', '--optimize not compatible with cuda devices, i.e. use --device cpu'
742
+
743
+ # Input
744
+ gs = int(max(model.stride)) # grid size (max stride)
745
+ imgsz = [check_img_size(x, gs) for x in imgsz] # verify img_size are gs-multiples
746
+ im = torch.zeros(batch_size, 3, *imgsz).to(device) # image size(1,3,320,192) BCHW iDetection
747
+
748
+ # Update model
749
+ model.eval()
750
+ for k, m in model.named_modules():
751
+ if isinstance(m, Detect):
752
+ m.inplace = inplace
753
+ m.dynamic = dynamic
754
+ m.export = True
755
+
756
+ for _ in range(2):
757
+ y = model(im) # dry runs
758
+ if half and not coreml:
759
+ im, model = im.half(), model.half() # to FP16
760
+ shape = tuple((y[0] if isinstance(y, tuple) else y).shape) # model output shape
761
+ metadata = {'stride': int(max(model.stride)), 'names': model.names} # model metadata
762
+ LOGGER.info(f"\n{colorstr('PyTorch:')} starting from {file} with output shape {shape} ({file_size(file):.1f} MB)")
763
+
764
+ # Exports
765
+ f = [''] * len(fmts) # exported filenames
766
+ warnings.filterwarnings(action='ignore', category=torch.jit.TracerWarning) # suppress TracerWarning
767
+ if jit: # TorchScript
768
+ f[0], _ = export_torchscript(model, im, file, optimize)
769
+ if engine: # TensorRT required before ONNX
770
+ f[1], _ = export_engine(model, im, file, half, dynamic, simplify, workspace, verbose)
771
+ if onnx or xml: # OpenVINO requires ONNX
772
+ f[2], _ = export_onnx(model, im, file, opset, dynamic, simplify)
773
+ if xml: # OpenVINO
774
+ f[3], _ = export_openvino(file, metadata, half, int8, data)
775
+ if coreml: # CoreML
776
+ f[4], ct_model = export_coreml(model, im, file, int8, half, nms)
777
+ if nms:
778
+ pipeline_coreml(ct_model, im, file, model.names, y)
779
+ if any((saved_model, pb, tflite, edgetpu, tfjs)): # TensorFlow formats
780
+ assert not tflite or not tfjs, 'TFLite and TF.js models must be exported separately, please pass only one type.'
781
+ assert not isinstance(model, ClassificationModel), 'ClassificationModel export to TF formats not yet supported.'
782
+ f[5], s_model = export_saved_model(model.cpu(),
783
+ im,
784
+ file,
785
+ dynamic,
786
+ tf_nms=nms or agnostic_nms or tfjs,
787
+ agnostic_nms=agnostic_nms or tfjs,
788
+ topk_per_class=topk_per_class,
789
+ topk_all=topk_all,
790
+ iou_thres=iou_thres,
791
+ conf_thres=conf_thres,
792
+ keras=keras)
793
+ if pb or tfjs: # pb prerequisite to tfjs
794
+ f[6], _ = export_pb(s_model, file)
795
+ if tflite or edgetpu:
796
+ f[7], _ = export_tflite(s_model, im, file, int8 or edgetpu, data=data, nms=nms, agnostic_nms=agnostic_nms)
797
+ if edgetpu:
798
+ f[8], _ = export_edgetpu(file)
799
+ add_tflite_metadata(f[8] or f[7], metadata, num_outputs=len(s_model.outputs))
800
+ if tfjs:
801
+ f[9], _ = export_tfjs(file, int8)
802
+ if paddle: # PaddlePaddle
803
+ f[10], _ = export_paddle(model, im, file, metadata)
804
+
805
+ # Finish
806
+ f = [str(x) for x in f if x] # filter out '' and None
807
+ if any(f):
808
+ cls, det, seg = (isinstance(model, x) for x in (ClassificationModel, DetectionModel, SegmentationModel)) # type
809
+ det &= not seg # segmentation models inherit from SegmentationModel(DetectionModel)
810
+ dir = Path('segment' if seg else 'classify' if cls else '')
811
+ h = '--half' if half else '' # --half FP16 inference arg
812
+ s = '# WARNING ⚠️ ClassificationModel not yet supported for PyTorch Hub AutoShape inference' if cls else \
813
+ '# WARNING ⚠️ SegmentationModel not yet supported for PyTorch Hub AutoShape inference' if seg else ''
814
+ LOGGER.info(f'\nExport complete ({time.time() - t:.1f}s)'
815
+ f"\nResults saved to {colorstr('bold', file.parent.resolve())}"
816
+ f"\nDetect: python {dir / ('detect.py' if det else 'predict.py')} --weights {f[-1]} {h}"
817
+ f"\nValidate: python {dir / 'val.py'} --weights {f[-1]} {h}"
818
+ f"\nPyTorch Hub: model = torch.hub.load('ultralytics/yolov5', 'custom', '{f[-1]}') {s}"
819
+ f'\nVisualize: https://netron.app')
820
+ return f # return list of exported files/dirs
821
+
822
+
823
+ def parse_opt(known=False):
824
+ parser = argparse.ArgumentParser()
825
+ parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')
826
+ parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s.pt', help='model.pt path(s)')
827
+ parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640, 640], help='image (h, w)')
828
+ parser.add_argument('--batch-size', type=int, default=1, help='batch size')
829
+ parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
830
+ parser.add_argument('--half', action='store_true', help='FP16 half-precision export')
831
+ parser.add_argument('--inplace', action='store_true', help='set YOLOv5 Detect() inplace=True')
832
+ parser.add_argument('--keras', action='store_true', help='TF: use Keras')
833
+ parser.add_argument('--optimize', action='store_true', help='TorchScript: optimize for mobile')
834
+ parser.add_argument('--int8', action='store_true', help='CoreML/TF/OpenVINO INT8 quantization')
835
+ parser.add_argument('--dynamic', action='store_true', help='ONNX/TF/TensorRT: dynamic axes')
836
+ parser.add_argument('--simplify', action='store_true', help='ONNX: simplify model')
837
+ parser.add_argument('--opset', type=int, default=17, help='ONNX: opset version')
838
+ parser.add_argument('--verbose', action='store_true', help='TensorRT: verbose log')
839
+ parser.add_argument('--workspace', type=int, default=4, help='TensorRT: workspace size (GB)')
840
+ parser.add_argument('--nms', action='store_true', help='TF: add NMS to model')
841
+ parser.add_argument('--agnostic-nms', action='store_true', help='TF: add agnostic NMS to model')
842
+ parser.add_argument('--topk-per-class', type=int, default=100, help='TF.js NMS: topk per class to keep')
843
+ parser.add_argument('--topk-all', type=int, default=100, help='TF.js NMS: topk for all classes to keep')
844
+ parser.add_argument('--iou-thres', type=float, default=0.45, help='TF.js NMS: IoU threshold')
845
+ parser.add_argument('--conf-thres', type=float, default=0.25, help='TF.js NMS: confidence threshold')
846
+ parser.add_argument(
847
+ '--include',
848
+ nargs='+',
849
+ default=['torchscript'],
850
+ help='torchscript, onnx, openvino, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle')
851
+ opt = parser.parse_known_args()[0] if known else parser.parse_args()
852
+ print_args(vars(opt))
853
+ return opt
854
+
855
+
856
+ def main(opt):
857
+ for opt.weights in (opt.weights if isinstance(opt.weights, list) else [opt.weights]):
858
+ run(**vars(opt))
859
+
860
+
861
+ if __name__ == '__main__':
862
+ opt = parse_opt()
863
+ main(opt)
TextDetection/hubconf.py ADDED
@@ -0,0 +1,169 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 πŸš€ by Ultralytics, AGPL-3.0 license
2
+ """
3
+ PyTorch Hub models https://pytorch.org/hub/ultralytics_yolov5
4
+
5
+ Usage:
6
+ import torch
7
+ model = torch.hub.load('ultralytics/yolov5', 'yolov5s') # official model
8
+ model = torch.hub.load('ultralytics/yolov5:master', 'yolov5s') # from branch
9
+ model = torch.hub.load('ultralytics/yolov5', 'custom', 'yolov5s.pt') # custom/local model
10
+ model = torch.hub.load('.', 'custom', 'yolov5s.pt', source='local') # local repo
11
+ """
12
+
13
+ import torch
14
+
15
+
16
+ def _create(name, pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
17
+ """Creates or loads a YOLOv5 model
18
+
19
+ Arguments:
20
+ name (str): model name 'yolov5s' or path 'path/to/best.pt'
21
+ pretrained (bool): load pretrained weights into the model
22
+ channels (int): number of input channels
23
+ classes (int): number of model classes
24
+ autoshape (bool): apply YOLOv5 .autoshape() wrapper to model
25
+ verbose (bool): print all information to screen
26
+ device (str, torch.device, None): device to use for model parameters
27
+
28
+ Returns:
29
+ YOLOv5 model
30
+ """
31
+ from pathlib import Path
32
+
33
+ from models.common import AutoShape, DetectMultiBackend
34
+ from models.experimental import attempt_load
35
+ from models.yolo import ClassificationModel, DetectionModel, SegmentationModel
36
+ from utils.downloads import attempt_download
37
+ from utils.general import LOGGER, ROOT, check_requirements, intersect_dicts, logging
38
+ from utils.torch_utils import select_device
39
+
40
+ if not verbose:
41
+ LOGGER.setLevel(logging.WARNING)
42
+ check_requirements(ROOT / 'requirements.txt', exclude=('opencv-python', 'tensorboard', 'thop'))
43
+ name = Path(name)
44
+ path = name.with_suffix('.pt') if name.suffix == '' and not name.is_dir() else name # checkpoint path
45
+ try:
46
+ device = select_device(device)
47
+ if pretrained and channels == 3 and classes == 80:
48
+ try:
49
+ model = DetectMultiBackend(path, device=device, fuse=autoshape) # detection model
50
+ if autoshape:
51
+ if model.pt and isinstance(model.model, ClassificationModel):
52
+ LOGGER.warning('WARNING ⚠️ YOLOv5 ClassificationModel is not yet AutoShape compatible. '
53
+ 'You must pass torch tensors in BCHW to this model, i.e. shape(1,3,224,224).')
54
+ elif model.pt and isinstance(model.model, SegmentationModel):
55
+ LOGGER.warning('WARNING ⚠️ YOLOv5 SegmentationModel is not yet AutoShape compatible. '
56
+ 'You will not be able to run inference with this model.')
57
+ else:
58
+ model = AutoShape(model) # for file/URI/PIL/cv2/np inputs and NMS
59
+ except Exception:
60
+ model = attempt_load(path, device=device, fuse=False) # arbitrary model
61
+ else:
62
+ cfg = list((Path(__file__).parent / 'models').rglob(f'{path.stem}.yaml'))[0] # model.yaml path
63
+ model = DetectionModel(cfg, channels, classes) # create model
64
+ if pretrained:
65
+ ckpt = torch.load(attempt_download(path), map_location=device) # load
66
+ csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32
67
+ csd = intersect_dicts(csd, model.state_dict(), exclude=['anchors']) # intersect
68
+ model.load_state_dict(csd, strict=False) # load
69
+ if len(ckpt['model'].names) == classes:
70
+ model.names = ckpt['model'].names # set class names attribute
71
+ if not verbose:
72
+ LOGGER.setLevel(logging.INFO) # reset to default
73
+ return model.to(device)
74
+
75
+ except Exception as e:
76
+ help_url = 'https://docs.ultralytics.com/yolov5/tutorials/pytorch_hub_model_loading'
77
+ s = f'{e}. Cache may be out of date, try `force_reload=True` or see {help_url} for help.'
78
+ raise Exception(s) from e
79
+
80
+
81
+ def custom(path='path/to/model.pt', autoshape=True, _verbose=True, device=None):
82
+ # YOLOv5 custom or local model
83
+ return _create(path, autoshape=autoshape, verbose=_verbose, device=device)
84
+
85
+
86
+ def yolov5n(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
87
+ # YOLOv5-nano model https://github.com/ultralytics/yolov5
88
+ return _create('yolov5n', pretrained, channels, classes, autoshape, _verbose, device)
89
+
90
+
91
+ def yolov5s(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
92
+ # YOLOv5-small model https://github.com/ultralytics/yolov5
93
+ return _create('yolov5s', pretrained, channels, classes, autoshape, _verbose, device)
94
+
95
+
96
+ def yolov5m(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
97
+ # YOLOv5-medium model https://github.com/ultralytics/yolov5
98
+ return _create('yolov5m', pretrained, channels, classes, autoshape, _verbose, device)
99
+
100
+
101
+ def yolov5l(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
102
+ # YOLOv5-large model https://github.com/ultralytics/yolov5
103
+ return _create('yolov5l', pretrained, channels, classes, autoshape, _verbose, device)
104
+
105
+
106
+ def yolov5x(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
107
+ # YOLOv5-xlarge model https://github.com/ultralytics/yolov5
108
+ return _create('yolov5x', pretrained, channels, classes, autoshape, _verbose, device)
109
+
110
+
111
+ def yolov5n6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
112
+ # YOLOv5-nano-P6 model https://github.com/ultralytics/yolov5
113
+ return _create('yolov5n6', pretrained, channels, classes, autoshape, _verbose, device)
114
+
115
+
116
+ def yolov5s6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
117
+ # YOLOv5-small-P6 model https://github.com/ultralytics/yolov5
118
+ return _create('yolov5s6', pretrained, channels, classes, autoshape, _verbose, device)
119
+
120
+
121
+ def yolov5m6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
122
+ # YOLOv5-medium-P6 model https://github.com/ultralytics/yolov5
123
+ return _create('yolov5m6', pretrained, channels, classes, autoshape, _verbose, device)
124
+
125
+
126
+ def yolov5l6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
127
+ # YOLOv5-large-P6 model https://github.com/ultralytics/yolov5
128
+ return _create('yolov5l6', pretrained, channels, classes, autoshape, _verbose, device)
129
+
130
+
131
+ def yolov5x6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
132
+ # YOLOv5-xlarge-P6 model https://github.com/ultralytics/yolov5
133
+ return _create('yolov5x6', pretrained, channels, classes, autoshape, _verbose, device)
134
+
135
+
136
+ if __name__ == '__main__':
137
+ import argparse
138
+ from pathlib import Path
139
+
140
+ import numpy as np
141
+ from PIL import Image
142
+
143
+ from utils.general import cv2, print_args
144
+
145
+ # Argparser
146
+ parser = argparse.ArgumentParser()
147
+ parser.add_argument('--model', type=str, default='yolov5s', help='model name')
148
+ opt = parser.parse_args()
149
+ print_args(vars(opt))
150
+
151
+ # Model
152
+ model = _create(name=opt.model, pretrained=True, channels=3, classes=80, autoshape=True, verbose=True)
153
+ # model = custom(path='path/to/model.pt') # custom
154
+
155
+ # Images
156
+ imgs = [
157
+ 'data/images/zidane.jpg', # filename
158
+ Path('data/images/zidane.jpg'), # Path
159
+ 'https://ultralytics.com/images/zidane.jpg', # URI
160
+ cv2.imread('data/images/bus.jpg')[:, :, ::-1], # OpenCV
161
+ Image.open('data/images/bus.jpg'), # PIL
162
+ np.zeros((320, 640, 3))] # numpy
163
+
164
+ # Inference
165
+ results = model(imgs, size=320) # batched inference
166
+
167
+ # Results
168
+ results.print()
169
+ results.save()
TextDetection/requirements.txt ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 requirements
2
+ # Usage: pip install -r requirements.txt
3
+
4
+ # Base ------------------------------------------------------------------------
5
+ gitpython>=3.1.30
6
+ matplotlib>=3.3
7
+ numpy>=1.18.5
8
+ opencv-python>=4.1.1
9
+ Pillow>=7.1.2
10
+ psutil # system resources
11
+ PyYAML>=5.3.1
12
+ requests>=2.23.0
13
+ scipy>=1.4.1
14
+ thop>=0.1.1 # FLOPs computation
15
+ torch>=1.7.0 # see https://pytorch.org/get-started/locally (recommended)
16
+ torchvision>=0.8.1
17
+ tqdm>=4.64.0
18
+ ultralytics>=8.0.111
19
+ # protobuf<=3.20.1 # https://github.com/ultralytics/yolov5/issues/8012
20
+
21
+ # Logging ---------------------------------------------------------------------
22
+ # tensorboard>=2.4.1
23
+ # clearml>=1.2.0
24
+ # comet
25
+
26
+ # Plotting --------------------------------------------------------------------
27
+ pandas>=1.1.4
28
+ seaborn>=0.11.0
29
+
30
+ # Export ----------------------------------------------------------------------
31
+ # coremltools>=6.0 # CoreML export
32
+ # onnx>=1.10.0 # ONNX export
33
+ # onnx-simplifier>=0.4.1 # ONNX simplifier
34
+ # nvidia-pyindex # TensorRT export
35
+ # nvidia-tensorrt # TensorRT export
36
+ # scikit-learn<=1.1.2 # CoreML quantization
37
+ # tensorflow>=2.4.0 # TF exports (-cpu, -aarch64, -macos)
38
+ # tensorflowjs>=3.9.0 # TF.js export
39
+ # openvino-dev # OpenVINO export
40
+
41
+ # Deploy ----------------------------------------------------------------------
42
+ setuptools>=65.5.1 # Snyk vulnerability fix
43
+ # tritonclient[all]~=2.24.0
44
+
45
+ # Extras ----------------------------------------------------------------------
46
+ # ipython # interactive notebook
47
+ # mss # screenshots
48
+ # albumentations>=1.0.3
49
+ # pycocotools>=2.0.6 # COCO mAP
TextDetection/runs/wordDetection/F1_curve.png ADDED
TextDetection/runs/wordDetection/PR_curve.png ADDED
TextDetection/runs/wordDetection/P_curve.png ADDED
TextDetection/runs/wordDetection/R_curve.png ADDED
TextDetection/runs/wordDetection/confusion_matrix.png ADDED
TextDetection/runs/wordDetection/hyp.yaml ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ lr0: 0.01
2
+ lrf: 0.1
3
+ momentum: 0.937
4
+ weight_decay: 0.0005
5
+ warmup_epochs: 3.0
6
+ warmup_momentum: 0.8
7
+ warmup_bias_lr: 0.1
8
+ box: 0.05
9
+ cls: 0.3
10
+ cls_pw: 1.0
11
+ obj: 0.7
12
+ obj_pw: 1.0
13
+ iou_t: 0.2
14
+ anchor_t: 4.0
15
+ fl_gamma: 0.0
16
+ hsv_h: 0.015
17
+ hsv_s: 0.7
18
+ hsv_v: 0.4
19
+ degrees: 0.0
20
+ translate: 0.1
21
+ scale: 0.9
22
+ shear: 0.0
23
+ perspective: 0.0
24
+ flipud: 0.0
25
+ fliplr: 0.5
26
+ mosaic: 1.0
27
+ mixup: 0.1
28
+ copy_paste: 0.1
TextDetection/runs/wordDetection/labels.jpg ADDED
TextDetection/runs/wordDetection/labels_correlogram.jpg ADDED
TextDetection/runs/wordDetection/opt.yaml ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ weights: yolov5s.pt
2
+ cfg: C:\Users\ParkLab\yolov5\models\yolov5s.yaml
3
+ data: C:\Users\ParkLab\yolov5\data\HCR.yaml
4
+ hyp:
5
+ lr0: 0.01
6
+ lrf: 0.1
7
+ momentum: 0.937
8
+ weight_decay: 0.0005
9
+ warmup_epochs: 3.0
10
+ warmup_momentum: 0.8
11
+ warmup_bias_lr: 0.1
12
+ box: 0.05
13
+ cls: 0.3
14
+ cls_pw: 1.0
15
+ obj: 0.7
16
+ obj_pw: 1.0
17
+ iou_t: 0.2
18
+ anchor_t: 4.0
19
+ fl_gamma: 0.0
20
+ hsv_h: 0.015
21
+ hsv_s: 0.7
22
+ hsv_v: 0.4
23
+ degrees: 0.0
24
+ translate: 0.1
25
+ scale: 0.9
26
+ shear: 0.0
27
+ perspective: 0.0
28
+ flipud: 0.0
29
+ fliplr: 0.5
30
+ mosaic: 1.0
31
+ mixup: 0.1
32
+ copy_paste: 0.1
33
+ epochs: 100
34
+ batch_size: 32
35
+ imgsz: 640
36
+ rect: false
37
+ resume: false
38
+ nosave: false
39
+ noval: false
40
+ noautoanchor: false
41
+ noplots: false
42
+ evolve: null
43
+ bucket: ''
44
+ cache: null
45
+ image_weights: false
46
+ device: '0'
47
+ multi_scale: false
48
+ single_cls: false
49
+ optimizer: SGD
50
+ sync_bn: false
51
+ workers: 8
52
+ project: runs\train
53
+ name: yolo_word_det
54
+ exist_ok: false
55
+ quad: false
56
+ cos_lr: false
57
+ label_smoothing: 0.0
58
+ patience: 100
59
+ freeze:
60
+ - 0
61
+ save_period: -1
62
+ seed: 0
63
+ local_rank: -1
64
+ entity: null
65
+ upload_dataset: false
66
+ bbox_interval: -1
67
+ artifact_alias: latest
68
+ save_dir: runs\train\yolo_word_det5
TextDetection/runs/wordDetection/results.csv ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ epoch, train/box_loss, train/obj_loss, train/cls_loss, metrics/precision, metrics/recall, metrics/mAP_0.5,metrics/mAP_0.5:0.95, val/box_loss, val/obj_loss, val/cls_loss, x/lr0, x/lr1, x/lr2
2
+ 0, 0.14343, 0.1321, 0, 0.10678, 0.24045, 0.070025, 0.016663, 0.12338, 0.16908, 0, 0.070769, 0.0032479, 0.0032479
3
+ 1, 0.11814, 0.17616, 0, 0.29756, 0.4878, 0.29039, 0.090169, 0.09548, 0.21864, 0, 0.04071, 0.006522, 0.006522
4
+ 2, 0.11103, 0.19449, 0, 0.36226, 0.46782, 0.33602, 0.084028, 0.10112, 0.22694, 0, 0.010591, 0.0097361, 0.0097361
5
+ 3, 0.10865, 0.19592, 0, 0.43876, 0.69566, 0.51856, 0.18541, 0.086634, 0.2838, 0, 0.00973, 0.00973, 0.00973
6
+ 4, 0.10498, 0.19423, 0, 0.42118, 0.70279, 0.50729, 0.18303, 0.083472, 0.25062, 0, 0.00973, 0.00973, 0.00973
7
+ 5, 0.10106, 0.1933, 0, 0.75029, 0.74585, 0.7626, 0.36368, 0.0782, 0.20763, 0, 0.00964, 0.00964, 0.00964
8
+ 6, 0.10067, 0.18856, 0, 0.88406, 0.79332, 0.81448, 0.38753, 0.071593, 0.19628, 0, 0.00955, 0.00955, 0.00955
9
+ 7, 0.097406, 0.19524, 0, 0.84659, 0.8041, 0.82744, 0.45989, 0.069756, 0.19131, 0, 0.00946, 0.00946, 0.00946
10
+ 8, 0.096121, 0.19137, 0, 0.87909, 0.80622, 0.83644, 0.48052, 0.067627, 0.18748, 0, 0.00937, 0.00937, 0.00937
11
+ 9, 0.095513, 0.19479, 0, 0.87642, 0.78766, 0.82577, 0.47358, 0.067359, 0.19059, 0, 0.00928, 0.00928, 0.00928
12
+ 10, 0.093917, 0.18792, 0, 0.91461, 0.81907, 0.84504, 0.5117, 0.065237, 0.18478, 0, 0.00919, 0.00919, 0.00919
13
+ 11, 0.093425, 0.19291, 0, 0.90101, 0.80465, 0.83468, 0.474, 0.068537, 0.19139, 0, 0.0091, 0.0091, 0.0091
14
+ 12, 0.09289, 0.18656, 0, 0.92043, 0.82673, 0.85478, 0.53099, 0.064175, 0.18201, 0, 0.00901, 0.00901, 0.00901
15
+ 13, 0.090676, 0.18805, 0, 0.92008, 0.82673, 0.85636, 0.51892, 0.064579, 0.18353, 0, 0.00892, 0.00892, 0.00892
16
+ 14, 0.093122, 0.19202, 0, 0.92253, 0.83725, 0.8624, 0.57188, 0.060162, 0.17608, 0, 0.00883, 0.00883, 0.00883
17
+ 15, 0.09126, 0.1907, 0, 0.92946, 0.83274, 0.8676, 0.54458, 0.062534, 0.17887, 0, 0.00874, 0.00874, 0.00874
18
+ 16, 0.090793, 0.18172, 0, 0.93174, 0.83929, 0.86568, 0.58843, 0.059511, 0.17312, 0, 0.00865, 0.00865, 0.00865
19
+ 17, 0.089946, 0.1857, 0, 0.92914, 0.83106, 0.86364, 0.57621, 0.061277, 0.17707, 0, 0.00856, 0.00856, 0.00856
20
+ 18, 0.091165, 0.1837, 0, 0.92212, 0.83831, 0.86719, 0.55994, 0.061093, 0.17976, 0, 0.00847, 0.00847, 0.00847
21
+ 19, 0.088599, 0.18972, 0, 0.93237, 0.84209, 0.87114, 0.62397, 0.057884, 0.16953, 0, 0.00838, 0.00838, 0.00838
22
+ 20, 0.090061, 0.18562, 0, 0.93445, 0.83685, 0.87553, 0.60871, 0.0585, 0.16933, 0, 0.00829, 0.00829, 0.00829
23
+ 21, 0.088208, 0.18263, 0, 0.93335, 0.84114, 0.87449, 0.60064, 0.059247, 0.17255, 0, 0.0082, 0.0082, 0.0082
24
+ 22, 0.0895, 0.18648, 0, 0.93338, 0.84309, 0.87566, 0.61248, 0.057899, 0.16824, 0, 0.00811, 0.00811, 0.00811
25
+ 23, 0.08849, 0.18464, 0, 0.93093, 0.84751, 0.87541, 0.59865, 0.059204, 0.17046, 0, 0.00802, 0.00802, 0.00802
26
+ 24, 0.087192, 0.18088, 0, 0.93032, 0.84618, 0.87731, 0.63006, 0.057412, 0.16889, 0, 0.00793, 0.00793, 0.00793
27
+ 25, 0.088312, 0.1889, 0, 0.93524, 0.84637, 0.88106, 0.63846, 0.056614, 0.16571, 0, 0.00784, 0.00784, 0.00784
28
+ 26, 0.088479, 0.18287, 0, 0.93518, 0.85074, 0.88419, 0.65769, 0.055262, 0.16252, 0, 0.00775, 0.00775, 0.00775
29
+ 27, 0.087063, 0.18672, 0, 0.9345, 0.84504, 0.87943, 0.61842, 0.05768, 0.16942, 0, 0.00766, 0.00766, 0.00766
30
+ 28, 0.086641, 0.18357, 0, 0.9364, 0.84936, 0.88206, 0.64976, 0.05565, 0.16261, 0, 0.00757, 0.00757, 0.00757
31
+ 29, 0.086989, 0.18444, 0, 0.93528, 0.8431, 0.87314, 0.63409, 0.056122, 0.16428, 0, 0.00748, 0.00748, 0.00748
32
+ 30, 0.085464, 0.17787, 0, 0.93888, 0.85282, 0.88306, 0.65505, 0.054957, 0.16096, 0, 0.00739, 0.00739, 0.00739
33
+ 31, 0.086473, 0.18357, 0, 0.93646, 0.84441, 0.88046, 0.63613, 0.05671, 0.16618, 0, 0.0073, 0.0073, 0.0073
34
+ 32, 0.086182, 0.17859, 0, 0.94104, 0.85224, 0.88425, 0.65941, 0.054651, 0.15962, 0, 0.00721, 0.00721, 0.00721
35
+ 33, 0.085764, 0.17765, 0, 0.93804, 0.85115, 0.8856, 0.64438, 0.056184, 0.16485, 0, 0.00712, 0.00712, 0.00712
36
+ 34, 0.08671, 0.17883, 0, 0.93353, 0.85538, 0.88441, 0.64989, 0.055651, 0.16415, 0, 0.00703, 0.00703, 0.00703
37
+ 35, 0.084131, 0.17841, 0, 0.94215, 0.85281, 0.8878, 0.67065, 0.054301, 0.158, 0, 0.00694, 0.00694, 0.00694
38
+ 36, 0.085284, 0.17247, 0, 0.94246, 0.85436, 0.88769, 0.67468, 0.054275, 0.15919, 0, 0.00685, 0.00685, 0.00685
39
+ 37, 0.085696, 0.17306, 0, 0.94052, 0.85661, 0.88989, 0.67156, 0.054833, 0.15942, 0, 0.00676, 0.00676, 0.00676
40
+ 38, 0.086575, 0.1815, 0, 0.93904, 0.85797, 0.89072, 0.67339, 0.054065, 0.15824, 0, 0.00667, 0.00667, 0.00667
41
+ 39, 0.084747, 0.17844, 0, 0.94037, 0.85318, 0.88526, 0.66841, 0.054299, 0.15972, 0, 0.00658, 0.00658, 0.00658
42
+ 40, 0.085733, 0.17424, 0, 0.94515, 0.85003, 0.89003, 0.66812, 0.053869, 0.15828, 0, 0.00649, 0.00649, 0.00649
43
+ 41, 0.086109, 0.17978, 0, 0.94387, 0.85705, 0.89019, 0.66022, 0.05489, 0.16003, 0, 0.0064, 0.0064, 0.0064
44
+ 42, 0.084408, 0.17579, 0, 0.93925, 0.84928, 0.88556, 0.66384, 0.054702, 0.16477, 0, 0.00631, 0.00631, 0.00631
45
+ 43, 0.083645, 0.17836, 0, 0.94362, 0.86298, 0.89463, 0.68944, 0.052935, 0.15475, 0, 0.00622, 0.00622, 0.00622
46
+ 44, 0.08338, 0.17339, 0, 0.94253, 0.86408, 0.89546, 0.6745, 0.053576, 0.15763, 0, 0.00613, 0.00613, 0.00613
47
+ 45, 0.084568, 0.17409, 0, 0.92463, 0.84786, 0.87813, 0.66222, 0.054652, 0.16843, 0, 0.00604, 0.00604, 0.00604
48
+ 46, 0.084783, 0.1667, 0, 0.94382, 0.85541, 0.88957, 0.67704, 0.053853, 0.15688, 0, 0.00595, 0.00595, 0.00595
49
+ 47, 0.083283, 0.17465, 0, 0.94633, 0.8605, 0.89158, 0.68796, 0.053052, 0.15478, 0, 0.00586, 0.00586, 0.00586
50
+ 48, 0.084094, 0.17705, 0, 0.94249, 0.86307, 0.89251, 0.69703, 0.052554, 0.15498, 0, 0.00577, 0.00577, 0.00577
51
+ 49, 0.083676, 0.17547, 0, 0.94565, 0.86156, 0.89494, 0.69568, 0.052399, 0.15305, 0, 0.00568, 0.00568, 0.00568
52
+ 50, 0.083022, 0.1728, 0, 0.94449, 0.86147, 0.89294, 0.69564, 0.052254, 0.15408, 0, 0.00559, 0.00559, 0.00559
53
+ 51, 0.081813, 0.1704, 0, 0.94366, 0.86687, 0.89606, 0.69269, 0.052507, 0.15389, 0, 0.0055, 0.0055, 0.0055
54
+ 52, 0.083914, 0.1764, 0, 0.92865, 0.84273, 0.87447, 0.66104, 0.054271, 0.16671, 0, 0.00541, 0.00541, 0.00541
55
+ 53, 0.082179, 0.1702, 0, 0.94446, 0.86165, 0.89463, 0.70157, 0.052073, 0.15209, 0, 0.00532, 0.00532, 0.00532
56
+ 54, 0.081849, 0.17025, 0, 0.9405, 0.84998, 0.89014, 0.68139, 0.053257, 0.15801, 0, 0.00523, 0.00523, 0.00523
57
+ 55, 0.083674, 0.17681, 0, 0.94171, 0.86368, 0.89523, 0.69899, 0.051968, 0.15354, 0, 0.00514, 0.00514, 0.00514
58
+ 56, 0.082308, 0.17403, 0, 0.93685, 0.86183, 0.88979, 0.66637, 0.053955, 0.15908, 0, 0.00505, 0.00505, 0.00505
59
+ 57, 0.082482, 0.17658, 0, 0.94371, 0.86209, 0.89347, 0.67414, 0.052889, 0.15547, 0, 0.00496, 0.00496, 0.00496
60
+ 58, 0.081728, 0.16741, 0, 0.94564, 0.86112, 0.89675, 0.70912, 0.051474, 0.1514, 0, 0.00487, 0.00487, 0.00487
61
+ 59, 0.083933, 0.1704, 0, 0.94333, 0.86307, 0.89448, 0.70195, 0.05189, 0.15253, 0, 0.00478, 0.00478, 0.00478
62
+ 60, 0.082575, 0.17006, 0, 0.94497, 0.86607, 0.89639, 0.70839, 0.051361, 0.15026, 0, 0.00469, 0.00469, 0.00469
63
+ 61, 0.082538, 0.16962, 0, 0.93968, 0.8643, 0.89563, 0.69941, 0.051753, 0.1522, 0, 0.0046, 0.0046, 0.0046
64
+ 62, 0.080964, 0.16399, 0, 0.94686, 0.85971, 0.89541, 0.71117, 0.051314, 0.15036, 0, 0.00451, 0.00451, 0.00451
65
+ 63, 0.081617, 0.17485, 0, 0.9446, 0.85228, 0.89139, 0.68514, 0.052893, 0.15677, 0, 0.00442, 0.00442, 0.00442
66
+ 64, 0.082902, 0.17403, 0, 0.94468, 0.85752, 0.89338, 0.6903, 0.052549, 0.15499, 0, 0.00433, 0.00433, 0.00433
67
+ 65, 0.077992, 0.165, 0, 0.94387, 0.8622, 0.89289, 0.69896, 0.05173, 0.15193, 0, 0.00424, 0.00424, 0.00424
68
+ 66, 0.081977, 0.1678, 0, 0.94592, 0.86432, 0.89541, 0.69135, 0.052076, 0.15315, 0, 0.00415, 0.00415, 0.00415
69
+ 67, 0.083111, 0.17345, 0, 0.94692, 0.8613, 0.89599, 0.70917, 0.051276, 0.15006, 0, 0.00406, 0.00406, 0.00406
70
+ 68, 0.081756, 0.17021, 0, 0.94576, 0.86254, 0.89739, 0.71084, 0.051092, 0.15002, 0, 0.00397, 0.00397, 0.00397
71
+ 69, 0.082199, 0.17096, 0, 0.9463, 0.86643, 0.89746, 0.71133, 0.050999, 0.14945, 0, 0.00388, 0.00388, 0.00388
72
+ 70, 0.082778, 0.17548, 0, 0.9482, 0.8609, 0.89782, 0.71145, 0.051164, 0.14959, 0, 0.00379, 0.00379, 0.00379
73
+ 71, 0.080038, 0.16676, 0, 0.94958, 0.86736, 0.90067, 0.70935, 0.0511, 0.15013, 0, 0.0037, 0.0037, 0.0037
74
+ 72, 0.081567, 0.16679, 0, 0.94337, 0.86651, 0.89831, 0.70053, 0.051656, 0.15132, 0, 0.00361, 0.00361, 0.00361
75
+ 73, 0.080533, 0.16562, 0, 0.95096, 0.86536, 0.90124, 0.72249, 0.050545, 0.1472, 0, 0.00352, 0.00352, 0.00352
76
+ 74, 0.081029, 0.16575, 0, 0.94243, 0.85382, 0.89317, 0.6888, 0.052537, 0.15647, 0, 0.00343, 0.00343, 0.00343
77
+ 75, 0.081182, 0.17176, 0, 0.95107, 0.86266, 0.90062, 0.72069, 0.050538, 0.14724, 0, 0.00334, 0.00334, 0.00334
78
+ 76, 0.081938, 0.16753, 0, 0.95038, 0.86699, 0.90307, 0.72068, 0.050536, 0.14704, 0, 0.00325, 0.00325, 0.00325
79
+ 77, 0.081434, 0.16673, 0, 0.95063, 0.86647, 0.90187, 0.72559, 0.050253, 0.14626, 0, 0.00316, 0.00316, 0.00316
80
+ 78, 0.083186, 0.16854, 0, 0.93933, 0.85865, 0.89181, 0.69442, 0.052013, 0.15513, 0, 0.00307, 0.00307, 0.00307
81
+ 79, 0.080724, 0.16352, 0, 0.94591, 0.86574, 0.90045, 0.70892, 0.051192, 0.15029, 0, 0.00298, 0.00298, 0.00298
82
+ 80, 0.082062, 0.16734, 0, 0.94767, 0.86283, 0.899, 0.72162, 0.050446, 0.1479, 0, 0.00289, 0.00289, 0.00289
83
+ 81, 0.082112, 0.16387, 0, 0.94625, 0.87067, 0.8994, 0.72242, 0.050153, 0.14716, 0, 0.0028, 0.0028, 0.0028
84
+ 82, 0.081101, 0.16599, 0, 0.94863, 0.86682, 0.90004, 0.7212, 0.050394, 0.14794, 0, 0.00271, 0.00271, 0.00271
85
+ 83, 0.080418, 0.17192, 0, 0.94982, 0.86881, 0.9021, 0.72215, 0.050213, 0.14673, 0, 0.00262, 0.00262, 0.00262
86
+ 84, 0.080462, 0.16803, 0, 0.9455, 0.86421, 0.89992, 0.70799, 0.051035, 0.14959, 0, 0.00253, 0.00253, 0.00253
87
+ 85, 0.081527, 0.17278, 0, 0.94606, 0.86855, 0.89989, 0.72238, 0.050204, 0.14736, 0, 0.00244, 0.00244, 0.00244
88
+ 86, 0.08107, 0.16729, 0, 0.95121, 0.86766, 0.90192, 0.72732, 0.049951, 0.14585, 0, 0.00235, 0.00235, 0.00235
89
+ 87, 0.080949, 0.16978, 0, 0.94822, 0.8644, 0.89882, 0.7229, 0.050133, 0.14727, 0, 0.00226, 0.00226, 0.00226
90
+ 88, 0.082379, 0.17123, 0, 0.94819, 0.86717, 0.90187, 0.71682, 0.050697, 0.14834, 0, 0.00217, 0.00217, 0.00217
91
+ 89, 0.079732, 0.16071, 0, 0.9487, 0.86813, 0.90238, 0.72628, 0.05002, 0.14618, 0, 0.00208, 0.00208, 0.00208
92
+ 90, 0.0803, 0.1615, 0, 0.95029, 0.86793, 0.90243, 0.72982, 0.049789, 0.14528, 0, 0.00199, 0.00199, 0.00199
93
+ 91, 0.080364, 0.16062, 0, 0.94924, 0.86469, 0.90068, 0.72207, 0.050106, 0.14672, 0, 0.0019, 0.0019, 0.0019
94
+ 92, 0.081735, 0.16763, 0, 0.94764, 0.87037, 0.90141, 0.72725, 0.049953, 0.14589, 0, 0.00181, 0.00181, 0.00181
95
+ 93, 0.080632, 0.16383, 0, 0.94882, 0.86704, 0.90079, 0.72667, 0.04985, 0.14562, 0, 0.00172, 0.00172, 0.00172
96
+ 94, 0.08076, 0.15877, 0, 0.94522, 0.87164, 0.90384, 0.72507, 0.050051, 0.14646, 0, 0.00163, 0.00163, 0.00163
97
+ 95, 0.081695, 0.16942, 0, 0.9482, 0.86917, 0.90346, 0.72735, 0.049871, 0.146, 0, 0.00154, 0.00154, 0.00154
98
+ 96, 0.080296, 0.16362, 0, 0.94895, 0.86483, 0.90046, 0.72406, 0.050098, 0.14637, 0, 0.00145, 0.00145, 0.00145
99
+ 97, 0.080617, 0.16571, 0, 0.95251, 0.86722, 0.90244, 0.73023, 0.049788, 0.14505, 0, 0.00136, 0.00136, 0.00136
100
+ 98, 0.080079, 0.16336, 0, 0.94819, 0.87085, 0.90324, 0.73317, 0.049553, 0.14422, 0, 0.00127, 0.00127, 0.00127
101
+ 99, 0.079671, 0.16214, 0, 0.95115, 0.86978, 0.90437, 0.73298, 0.049534, 0.14428, 0, 0.00118, 0.00118, 0.00118
TextDetection/runs/wordDetection/results.png ADDED
TextDetection/runs/wordDetection/weights/best.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9039ccbb2733b3a557ec0e28b3fbc53d3a0489812c102cf9bc082ed2b6266868
3
+ size 14385013
TextDetection/runs/wordDetection/weights/last.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2ef353e8445999f03f471e6667e4559b168213f4b24379b83e007f876754d9d9
3
+ size 14385013
TextDetection/segment/predict.py ADDED
@@ -0,0 +1,284 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 πŸš€ by Ultralytics, AGPL-3.0 license
2
+ """
3
+ Run YOLOv5 segmentation inference on images, videos, directories, streams, etc.
4
+
5
+ Usage - sources:
6
+ $ python segment/predict.py --weights yolov5s-seg.pt --source 0 # webcam
7
+ img.jpg # image
8
+ vid.mp4 # video
9
+ screen # screenshot
10
+ path/ # directory
11
+ list.txt # list of images
12
+ list.streams # list of streams
13
+ 'path/*.jpg' # glob
14
+ 'https://youtu.be/Zgi9g1ksQHc' # YouTube
15
+ 'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
16
+
17
+ Usage - formats:
18
+ $ python segment/predict.py --weights yolov5s-seg.pt # PyTorch
19
+ yolov5s-seg.torchscript # TorchScript
20
+ yolov5s-seg.onnx # ONNX Runtime or OpenCV DNN with --dnn
21
+ yolov5s-seg_openvino_model # OpenVINO
22
+ yolov5s-seg.engine # TensorRT
23
+ yolov5s-seg.mlmodel # CoreML (macOS-only)
24
+ yolov5s-seg_saved_model # TensorFlow SavedModel
25
+ yolov5s-seg.pb # TensorFlow GraphDef
26
+ yolov5s-seg.tflite # TensorFlow Lite
27
+ yolov5s-seg_edgetpu.tflite # TensorFlow Edge TPU
28
+ yolov5s-seg_paddle_model # PaddlePaddle
29
+ """
30
+
31
+ import argparse
32
+ import os
33
+ import platform
34
+ import sys
35
+ from pathlib import Path
36
+
37
+ import torch
38
+
39
+ FILE = Path(__file__).resolve()
40
+ ROOT = FILE.parents[1] # YOLOv5 root directory
41
+ if str(ROOT) not in sys.path:
42
+ sys.path.append(str(ROOT)) # add ROOT to PATH
43
+ ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
44
+
45
+ from models.common import DetectMultiBackend
46
+ from utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages, LoadScreenshots, LoadStreams
47
+ from utils.general import (LOGGER, Profile, check_file, check_img_size, check_imshow, check_requirements, colorstr, cv2,
48
+ increment_path, non_max_suppression, print_args, scale_boxes, scale_segments,
49
+ strip_optimizer)
50
+ from utils.plots import Annotator, colors, save_one_box
51
+ from utils.segment.general import masks2segments, process_mask, process_mask_native
52
+ from utils.torch_utils import select_device, smart_inference_mode
53
+
54
+
55
+ @smart_inference_mode()
56
+ def run(
57
+ weights=ROOT / 'yolov5s-seg.pt', # model.pt path(s)
58
+ source=ROOT / 'data/images', # file/dir/URL/glob/screen/0(webcam)
59
+ data=ROOT / 'data/coco128.yaml', # dataset.yaml path
60
+ imgsz=(640, 640), # inference size (height, width)
61
+ conf_thres=0.25, # confidence threshold
62
+ iou_thres=0.45, # NMS IOU threshold
63
+ max_det=1000, # maximum detections per image
64
+ device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
65
+ view_img=False, # show results
66
+ save_txt=False, # save results to *.txt
67
+ save_conf=False, # save confidences in --save-txt labels
68
+ save_crop=False, # save cropped prediction boxes
69
+ nosave=False, # do not save images/videos
70
+ classes=None, # filter by class: --class 0, or --class 0 2 3
71
+ agnostic_nms=False, # class-agnostic NMS
72
+ augment=False, # augmented inference
73
+ visualize=False, # visualize features
74
+ update=False, # update all models
75
+ project=ROOT / 'runs/predict-seg', # save results to project/name
76
+ name='exp', # save results to project/name
77
+ exist_ok=False, # existing project/name ok, do not increment
78
+ line_thickness=3, # bounding box thickness (pixels)
79
+ hide_labels=False, # hide labels
80
+ hide_conf=False, # hide confidences
81
+ half=False, # use FP16 half-precision inference
82
+ dnn=False, # use OpenCV DNN for ONNX inference
83
+ vid_stride=1, # video frame-rate stride
84
+ retina_masks=False,
85
+ ):
86
+ source = str(source)
87
+ save_img = not nosave and not source.endswith('.txt') # save inference images
88
+ is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
89
+ is_url = source.lower().startswith(('rtsp://', 'rtmp://', 'http://', 'https://'))
90
+ webcam = source.isnumeric() or source.endswith('.streams') or (is_url and not is_file)
91
+ screenshot = source.lower().startswith('screen')
92
+ if is_url and is_file:
93
+ source = check_file(source) # download
94
+
95
+ # Directories
96
+ save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
97
+ (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
98
+
99
+ # Load model
100
+ device = select_device(device)
101
+ model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
102
+ stride, names, pt = model.stride, model.names, model.pt
103
+ imgsz = check_img_size(imgsz, s=stride) # check image size
104
+
105
+ # Dataloader
106
+ bs = 1 # batch_size
107
+ if webcam:
108
+ view_img = check_imshow(warn=True)
109
+ dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
110
+ bs = len(dataset)
111
+ elif screenshot:
112
+ dataset = LoadScreenshots(source, img_size=imgsz, stride=stride, auto=pt)
113
+ else:
114
+ dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
115
+ vid_path, vid_writer = [None] * bs, [None] * bs
116
+
117
+ # Run inference
118
+ model.warmup(imgsz=(1 if pt else bs, 3, *imgsz)) # warmup
119
+ seen, windows, dt = 0, [], (Profile(), Profile(), Profile())
120
+ for path, im, im0s, vid_cap, s in dataset:
121
+ with dt[0]:
122
+ im = torch.from_numpy(im).to(model.device)
123
+ im = im.half() if model.fp16 else im.float() # uint8 to fp16/32
124
+ im /= 255 # 0 - 255 to 0.0 - 1.0
125
+ if len(im.shape) == 3:
126
+ im = im[None] # expand for batch dim
127
+
128
+ # Inference
129
+ with dt[1]:
130
+ visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False
131
+ pred, proto = model(im, augment=augment, visualize=visualize)[:2]
132
+
133
+ # NMS
134
+ with dt[2]:
135
+ pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det, nm=32)
136
+
137
+ # Second-stage classifier (optional)
138
+ # pred = utils.general.apply_classifier(pred, classifier_model, im, im0s)
139
+
140
+ # Process predictions
141
+ for i, det in enumerate(pred): # per image
142
+ seen += 1
143
+ if webcam: # batch_size >= 1
144
+ p, im0, frame = path[i], im0s[i].copy(), dataset.count
145
+ s += f'{i}: '
146
+ else:
147
+ p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0)
148
+
149
+ p = Path(p) # to Path
150
+ save_path = str(save_dir / p.name) # im.jpg
151
+ txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # im.txt
152
+ s += '%gx%g ' % im.shape[2:] # print string
153
+ imc = im0.copy() if save_crop else im0 # for save_crop
154
+ annotator = Annotator(im0, line_width=line_thickness, example=str(names))
155
+ if len(det):
156
+ if retina_masks:
157
+ # scale bbox first the crop masks
158
+ det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round() # rescale boxes to im0 size
159
+ masks = process_mask_native(proto[i], det[:, 6:], det[:, :4], im0.shape[:2]) # HWC
160
+ else:
161
+ masks = process_mask(proto[i], det[:, 6:], det[:, :4], im.shape[2:], upsample=True) # HWC
162
+ det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round() # rescale boxes to im0 size
163
+
164
+ # Segments
165
+ if save_txt:
166
+ segments = [
167
+ scale_segments(im0.shape if retina_masks else im.shape[2:], x, im0.shape, normalize=True)
168
+ for x in reversed(masks2segments(masks))]
169
+
170
+ # Print results
171
+ for c in det[:, 5].unique():
172
+ n = (det[:, 5] == c).sum() # detections per class
173
+ s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
174
+
175
+ # Mask plotting
176
+ annotator.masks(
177
+ masks,
178
+ colors=[colors(x, True) for x in det[:, 5]],
179
+ im_gpu=torch.as_tensor(im0, dtype=torch.float16).to(device).permute(2, 0, 1).flip(0).contiguous() /
180
+ 255 if retina_masks else im[i])
181
+
182
+ # Write results
183
+ for j, (*xyxy, conf, cls) in enumerate(reversed(det[:, :6])):
184
+ if save_txt: # Write to file
185
+ seg = segments[j].reshape(-1) # (n,2) to (n*2)
186
+ line = (cls, *seg, conf) if save_conf else (cls, *seg) # label format
187
+ with open(f'{txt_path}.txt', 'a') as f:
188
+ f.write(('%g ' * len(line)).rstrip() % line + '\n')
189
+
190
+ if save_img or save_crop or view_img: # Add bbox to image
191
+ c = int(cls) # integer class
192
+ label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}')
193
+ annotator.box_label(xyxy, label, color=colors(c, True))
194
+ # annotator.draw.polygon(segments[j], outline=colors(c, True), width=3)
195
+ if save_crop:
196
+ save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True)
197
+
198
+ # Stream results
199
+ im0 = annotator.result()
200
+ if view_img:
201
+ if platform.system() == 'Linux' and p not in windows:
202
+ windows.append(p)
203
+ cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO) # allow window resize (Linux)
204
+ cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0])
205
+ cv2.imshow(str(p), im0)
206
+ if cv2.waitKey(1) == ord('q'): # 1 millisecond
207
+ exit()
208
+
209
+ # Save results (image with detections)
210
+ if save_img:
211
+ if dataset.mode == 'image':
212
+ cv2.imwrite(save_path, im0)
213
+ else: # 'video' or 'stream'
214
+ if vid_path[i] != save_path: # new video
215
+ vid_path[i] = save_path
216
+ if isinstance(vid_writer[i], cv2.VideoWriter):
217
+ vid_writer[i].release() # release previous video writer
218
+ if vid_cap: # video
219
+ fps = vid_cap.get(cv2.CAP_PROP_FPS)
220
+ w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
221
+ h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
222
+ else: # stream
223
+ fps, w, h = 30, im0.shape[1], im0.shape[0]
224
+ save_path = str(Path(save_path).with_suffix('.mp4')) # force *.mp4 suffix on results videos
225
+ vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
226
+ vid_writer[i].write(im0)
227
+
228
+ # Print time (inference-only)
229
+ LOGGER.info(f"{s}{'' if len(det) else '(no detections), '}{dt[1].dt * 1E3:.1f}ms")
230
+
231
+ # Print results
232
+ t = tuple(x.t / seen * 1E3 for x in dt) # speeds per image
233
+ LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}' % t)
234
+ if save_txt or save_img:
235
+ s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
236
+ LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
237
+ if update:
238
+ strip_optimizer(weights[0]) # update model (to fix SourceChangeWarning)
239
+
240
+
241
+ def parse_opt():
242
+ parser = argparse.ArgumentParser()
243
+ parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s-seg.pt', help='model path(s)')
244
+ parser.add_argument('--source', type=str, default=ROOT / 'data/images', help='file/dir/URL/glob/screen/0(webcam)')
245
+ parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='(optional) dataset.yaml path')
246
+ parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w')
247
+ parser.add_argument('--conf-thres', type=float, default=0.25, help='confidence threshold')
248
+ parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IoU threshold')
249
+ parser.add_argument('--max-det', type=int, default=1000, help='maximum detections per image')
250
+ parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
251
+ parser.add_argument('--view-img', action='store_true', help='show results')
252
+ parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
253
+ parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
254
+ parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes')
255
+ parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
256
+ parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --classes 0, or --classes 0 2 3')
257
+ parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
258
+ parser.add_argument('--augment', action='store_true', help='augmented inference')
259
+ parser.add_argument('--visualize', action='store_true', help='visualize features')
260
+ parser.add_argument('--update', action='store_true', help='update all models')
261
+ parser.add_argument('--project', default=ROOT / 'runs/predict-seg', help='save results to project/name')
262
+ parser.add_argument('--name', default='exp', help='save results to project/name')
263
+ parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
264
+ parser.add_argument('--line-thickness', default=3, type=int, help='bounding box thickness (pixels)')
265
+ parser.add_argument('--hide-labels', default=False, action='store_true', help='hide labels')
266
+ parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences')
267
+ parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
268
+ parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
269
+ parser.add_argument('--vid-stride', type=int, default=1, help='video frame-rate stride')
270
+ parser.add_argument('--retina-masks', action='store_true', help='whether to plot masks in native resolution')
271
+ opt = parser.parse_args()
272
+ opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand
273
+ print_args(vars(opt))
274
+ return opt
275
+
276
+
277
+ def main(opt):
278
+ check_requirements(ROOT / 'requirements.txt', exclude=('tensorboard', 'thop'))
279
+ run(**vars(opt))
280
+
281
+
282
+ if __name__ == '__main__':
283
+ opt = parse_opt()
284
+ main(opt)
TextDetection/segment/train.py ADDED
@@ -0,0 +1,666 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 πŸš€ by Ultralytics, AGPL-3.0 license
2
+ """
3
+ Train a YOLOv5 segment model on a segment dataset
4
+ Models and datasets download automatically from the latest YOLOv5 release.
5
+
6
+ Usage - Single-GPU training:
7
+ $ python segment/train.py --data coco128-seg.yaml --weights yolov5s-seg.pt --img 640 # from pretrained (recommended)
8
+ $ python segment/train.py --data coco128-seg.yaml --weights '' --cfg yolov5s-seg.yaml --img 640 # from scratch
9
+
10
+ Usage - Multi-GPU DDP training:
11
+ $ python -m torch.distributed.run --nproc_per_node 4 --master_port 1 segment/train.py --data coco128-seg.yaml --weights yolov5s-seg.pt --img 640 --device 0,1,2,3
12
+
13
+ Models: https://github.com/ultralytics/yolov5/tree/master/models
14
+ Datasets: https://github.com/ultralytics/yolov5/tree/master/data
15
+ Tutorial: https://docs.ultralytics.com/yolov5/tutorials/train_custom_data
16
+ """
17
+
18
+ import argparse
19
+ import math
20
+ import os
21
+ import random
22
+ import subprocess
23
+ import sys
24
+ import time
25
+ from copy import deepcopy
26
+ from datetime import datetime
27
+ from pathlib import Path
28
+
29
+ import numpy as np
30
+ import torch
31
+ import torch.distributed as dist
32
+ import torch.nn as nn
33
+ import yaml
34
+ from torch.optim import lr_scheduler
35
+ from tqdm import tqdm
36
+
37
+ FILE = Path(__file__).resolve()
38
+ ROOT = FILE.parents[1] # YOLOv5 root directory
39
+ if str(ROOT) not in sys.path:
40
+ sys.path.append(str(ROOT)) # add ROOT to PATH
41
+ ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
42
+
43
+ import segment.val as validate # for end-of-epoch mAP
44
+ from models.experimental import attempt_load
45
+ from models.yolo import SegmentationModel
46
+ from utils.autoanchor import check_anchors
47
+ from utils.autobatch import check_train_batch_size
48
+ from utils.callbacks import Callbacks
49
+ from utils.downloads import attempt_download, is_url
50
+ from utils.general import (LOGGER, TQDM_BAR_FORMAT, check_amp, check_dataset, check_file, check_git_info,
51
+ check_git_status, check_img_size, check_requirements, check_suffix, check_yaml, colorstr,
52
+ get_latest_run, increment_path, init_seeds, intersect_dicts, labels_to_class_weights,
53
+ labels_to_image_weights, one_cycle, print_args, print_mutation, strip_optimizer, yaml_save)
54
+ from utils.loggers import GenericLogger
55
+ from utils.plots import plot_evolve, plot_labels
56
+ from utils.segment.dataloaders import create_dataloader
57
+ from utils.segment.loss import ComputeLoss
58
+ from utils.segment.metrics import KEYS, fitness
59
+ from utils.segment.plots import plot_images_and_masks, plot_results_with_masks
60
+ from utils.torch_utils import (EarlyStopping, ModelEMA, de_parallel, select_device, smart_DDP, smart_optimizer,
61
+ smart_resume, torch_distributed_zero_first)
62
+
63
+ LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1)) # https://pytorch.org/docs/stable/elastic/run.html
64
+ RANK = int(os.getenv('RANK', -1))
65
+ WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1))
66
+ GIT_INFO = check_git_info()
67
+
68
+
69
+ def train(hyp, opt, device, callbacks): # hyp is path/to/hyp.yaml or hyp dictionary
70
+ save_dir, epochs, batch_size, weights, single_cls, evolve, data, cfg, resume, noval, nosave, workers, freeze, mask_ratio = \
71
+ Path(opt.save_dir), opt.epochs, opt.batch_size, opt.weights, opt.single_cls, opt.evolve, opt.data, opt.cfg, \
72
+ opt.resume, opt.noval, opt.nosave, opt.workers, opt.freeze, opt.mask_ratio
73
+ # callbacks.run('on_pretrain_routine_start')
74
+
75
+ # Directories
76
+ w = save_dir / 'weights' # weights dir
77
+ (w.parent if evolve else w).mkdir(parents=True, exist_ok=True) # make dir
78
+ last, best = w / 'last.pt', w / 'best.pt'
79
+
80
+ # Hyperparameters
81
+ if isinstance(hyp, str):
82
+ with open(hyp, errors='ignore') as f:
83
+ hyp = yaml.safe_load(f) # load hyps dict
84
+ LOGGER.info(colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items()))
85
+ opt.hyp = hyp.copy() # for saving hyps to checkpoints
86
+
87
+ # Save run settings
88
+ if not evolve:
89
+ yaml_save(save_dir / 'hyp.yaml', hyp)
90
+ yaml_save(save_dir / 'opt.yaml', vars(opt))
91
+
92
+ # Loggers
93
+ data_dict = None
94
+ if RANK in {-1, 0}:
95
+ logger = GenericLogger(opt=opt, console_logger=LOGGER)
96
+
97
+ # Config
98
+ plots = not evolve and not opt.noplots # create plots
99
+ overlap = not opt.no_overlap
100
+ cuda = device.type != 'cpu'
101
+ init_seeds(opt.seed + 1 + RANK, deterministic=True)
102
+ with torch_distributed_zero_first(LOCAL_RANK):
103
+ data_dict = data_dict or check_dataset(data) # check if None
104
+ train_path, val_path = data_dict['train'], data_dict['val']
105
+ nc = 1 if single_cls else int(data_dict['nc']) # number of classes
106
+ names = {0: 'item'} if single_cls and len(data_dict['names']) != 1 else data_dict['names'] # class names
107
+ is_coco = isinstance(val_path, str) and val_path.endswith('coco/val2017.txt') # COCO dataset
108
+
109
+ # Model
110
+ check_suffix(weights, '.pt') # check weights
111
+ pretrained = weights.endswith('.pt')
112
+ if pretrained:
113
+ with torch_distributed_zero_first(LOCAL_RANK):
114
+ weights = attempt_download(weights) # download if not found locally
115
+ ckpt = torch.load(weights, map_location='cpu') # load checkpoint to CPU to avoid CUDA memory leak
116
+ model = SegmentationModel(cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device)
117
+ exclude = ['anchor'] if (cfg or hyp.get('anchors')) and not resume else [] # exclude keys
118
+ csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32
119
+ csd = intersect_dicts(csd, model.state_dict(), exclude=exclude) # intersect
120
+ model.load_state_dict(csd, strict=False) # load
121
+ LOGGER.info(f'Transferred {len(csd)}/{len(model.state_dict())} items from {weights}') # report
122
+ else:
123
+ model = SegmentationModel(cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create
124
+ amp = check_amp(model) # check AMP
125
+
126
+ # Freeze
127
+ freeze = [f'model.{x}.' for x in (freeze if len(freeze) > 1 else range(freeze[0]))] # layers to freeze
128
+ for k, v in model.named_parameters():
129
+ v.requires_grad = True # train all layers
130
+ # v.register_hook(lambda x: torch.nan_to_num(x)) # NaN to 0 (commented for erratic training results)
131
+ if any(x in k for x in freeze):
132
+ LOGGER.info(f'freezing {k}')
133
+ v.requires_grad = False
134
+
135
+ # Image size
136
+ gs = max(int(model.stride.max()), 32) # grid size (max stride)
137
+ imgsz = check_img_size(opt.imgsz, gs, floor=gs * 2) # verify imgsz is gs-multiple
138
+
139
+ # Batch size
140
+ if RANK == -1 and batch_size == -1: # single-GPU only, estimate best batch size
141
+ batch_size = check_train_batch_size(model, imgsz, amp)
142
+ logger.update_params({'batch_size': batch_size})
143
+ # loggers.on_params_update({"batch_size": batch_size})
144
+
145
+ # Optimizer
146
+ nbs = 64 # nominal batch size
147
+ accumulate = max(round(nbs / batch_size), 1) # accumulate loss before optimizing
148
+ hyp['weight_decay'] *= batch_size * accumulate / nbs # scale weight_decay
149
+ optimizer = smart_optimizer(model, opt.optimizer, hyp['lr0'], hyp['momentum'], hyp['weight_decay'])
150
+
151
+ # Scheduler
152
+ if opt.cos_lr:
153
+ lf = one_cycle(1, hyp['lrf'], epochs) # cosine 1->hyp['lrf']
154
+ else:
155
+ lf = lambda x: (1 - x / epochs) * (1.0 - hyp['lrf']) + hyp['lrf'] # linear
156
+ scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf) # plot_lr_scheduler(optimizer, scheduler, epochs)
157
+
158
+ # EMA
159
+ ema = ModelEMA(model) if RANK in {-1, 0} else None
160
+
161
+ # Resume
162
+ best_fitness, start_epoch = 0.0, 0
163
+ if pretrained:
164
+ if resume:
165
+ best_fitness, start_epoch, epochs = smart_resume(ckpt, optimizer, ema, weights, epochs, resume)
166
+ del ckpt, csd
167
+
168
+ # DP mode
169
+ if cuda and RANK == -1 and torch.cuda.device_count() > 1:
170
+ LOGGER.warning(
171
+ 'WARNING ⚠️ DP not recommended, use torch.distributed.run for best DDP Multi-GPU results.\n'
172
+ 'See Multi-GPU Tutorial at https://docs.ultralytics.com/yolov5/tutorials/multi_gpu_training to get started.'
173
+ )
174
+ model = torch.nn.DataParallel(model)
175
+
176
+ # SyncBatchNorm
177
+ if opt.sync_bn and cuda and RANK != -1:
178
+ model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
179
+ LOGGER.info('Using SyncBatchNorm()')
180
+
181
+ # Trainloader
182
+ train_loader, dataset = create_dataloader(
183
+ train_path,
184
+ imgsz,
185
+ batch_size // WORLD_SIZE,
186
+ gs,
187
+ single_cls,
188
+ hyp=hyp,
189
+ augment=True,
190
+ cache=None if opt.cache == 'val' else opt.cache,
191
+ rect=opt.rect,
192
+ rank=LOCAL_RANK,
193
+ workers=workers,
194
+ image_weights=opt.image_weights,
195
+ quad=opt.quad,
196
+ prefix=colorstr('train: '),
197
+ shuffle=True,
198
+ mask_downsample_ratio=mask_ratio,
199
+ overlap_mask=overlap,
200
+ )
201
+ labels = np.concatenate(dataset.labels, 0)
202
+ mlc = int(labels[:, 0].max()) # max label class
203
+ assert mlc < nc, f'Label class {mlc} exceeds nc={nc} in {data}. Possible class labels are 0-{nc - 1}'
204
+
205
+ # Process 0
206
+ if RANK in {-1, 0}:
207
+ val_loader = create_dataloader(val_path,
208
+ imgsz,
209
+ batch_size // WORLD_SIZE * 2,
210
+ gs,
211
+ single_cls,
212
+ hyp=hyp,
213
+ cache=None if noval else opt.cache,
214
+ rect=True,
215
+ rank=-1,
216
+ workers=workers * 2,
217
+ pad=0.5,
218
+ mask_downsample_ratio=mask_ratio,
219
+ overlap_mask=overlap,
220
+ prefix=colorstr('val: '))[0]
221
+
222
+ if not resume:
223
+ if not opt.noautoanchor:
224
+ check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz) # run AutoAnchor
225
+ model.half().float() # pre-reduce anchor precision
226
+
227
+ if plots:
228
+ plot_labels(labels, names, save_dir)
229
+ # callbacks.run('on_pretrain_routine_end', labels, names)
230
+
231
+ # DDP mode
232
+ if cuda and RANK != -1:
233
+ model = smart_DDP(model)
234
+
235
+ # Model attributes
236
+ nl = de_parallel(model).model[-1].nl # number of detection layers (to scale hyps)
237
+ hyp['box'] *= 3 / nl # scale to layers
238
+ hyp['cls'] *= nc / 80 * 3 / nl # scale to classes and layers
239
+ hyp['obj'] *= (imgsz / 640) ** 2 * 3 / nl # scale to image size and layers
240
+ hyp['label_smoothing'] = opt.label_smoothing
241
+ model.nc = nc # attach number of classes to model
242
+ model.hyp = hyp # attach hyperparameters to model
243
+ model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc # attach class weights
244
+ model.names = names
245
+
246
+ # Start training
247
+ t0 = time.time()
248
+ nb = len(train_loader) # number of batches
249
+ nw = max(round(hyp['warmup_epochs'] * nb), 100) # number of warmup iterations, max(3 epochs, 100 iterations)
250
+ # nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training
251
+ last_opt_step = -1
252
+ maps = np.zeros(nc) # mAP per class
253
+ results = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) # P, R, [email protected], [email protected], val_loss(box, obj, cls)
254
+ scheduler.last_epoch = start_epoch - 1 # do not move
255
+ scaler = torch.cuda.amp.GradScaler(enabled=amp)
256
+ stopper, stop = EarlyStopping(patience=opt.patience), False
257
+ compute_loss = ComputeLoss(model, overlap=overlap) # init loss class
258
+ # callbacks.run('on_train_start')
259
+ LOGGER.info(f'Image sizes {imgsz} train, {imgsz} val\n'
260
+ f'Using {train_loader.num_workers * WORLD_SIZE} dataloader workers\n'
261
+ f"Logging results to {colorstr('bold', save_dir)}\n"
262
+ f'Starting training for {epochs} epochs...')
263
+ for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------
264
+ # callbacks.run('on_train_epoch_start')
265
+ model.train()
266
+
267
+ # Update image weights (optional, single-GPU only)
268
+ if opt.image_weights:
269
+ cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc # class weights
270
+ iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw) # image weights
271
+ dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n) # rand weighted idx
272
+
273
+ # Update mosaic border (optional)
274
+ # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
275
+ # dataset.mosaic_border = [b - imgsz, -b] # height, width borders
276
+
277
+ mloss = torch.zeros(4, device=device) # mean losses
278
+ if RANK != -1:
279
+ train_loader.sampler.set_epoch(epoch)
280
+ pbar = enumerate(train_loader)
281
+ LOGGER.info(('\n' + '%11s' * 8) %
282
+ ('Epoch', 'GPU_mem', 'box_loss', 'seg_loss', 'obj_loss', 'cls_loss', 'Instances', 'Size'))
283
+ if RANK in {-1, 0}:
284
+ pbar = tqdm(pbar, total=nb, bar_format=TQDM_BAR_FORMAT) # progress bar
285
+ optimizer.zero_grad()
286
+ for i, (imgs, targets, paths, _, masks) in pbar: # batch ------------------------------------------------------
287
+ # callbacks.run('on_train_batch_start')
288
+ ni = i + nb * epoch # number integrated batches (since train start)
289
+ imgs = imgs.to(device, non_blocking=True).float() / 255 # uint8 to float32, 0-255 to 0.0-1.0
290
+
291
+ # Warmup
292
+ if ni <= nw:
293
+ xi = [0, nw] # x interp
294
+ # compute_loss.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou)
295
+ accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round())
296
+ for j, x in enumerate(optimizer.param_groups):
297
+ # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
298
+ x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * lf(epoch)])
299
+ if 'momentum' in x:
300
+ x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']])
301
+
302
+ # Multi-scale
303
+ if opt.multi_scale:
304
+ sz = random.randrange(int(imgsz * 0.5), int(imgsz * 1.5) + gs) // gs * gs # size
305
+ sf = sz / max(imgs.shape[2:]) # scale factor
306
+ if sf != 1:
307
+ ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] # new shape (stretched to gs-multiple)
308
+ imgs = nn.functional.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)
309
+
310
+ # Forward
311
+ with torch.cuda.amp.autocast(amp):
312
+ pred = model(imgs) # forward
313
+ loss, loss_items = compute_loss(pred, targets.to(device), masks=masks.to(device).float())
314
+ if RANK != -1:
315
+ loss *= WORLD_SIZE # gradient averaged between devices in DDP mode
316
+ if opt.quad:
317
+ loss *= 4.
318
+
319
+ # Backward
320
+ scaler.scale(loss).backward()
321
+
322
+ # Optimize - https://pytorch.org/docs/master/notes/amp_examples.html
323
+ if ni - last_opt_step >= accumulate:
324
+ scaler.unscale_(optimizer) # unscale gradients
325
+ torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=10.0) # clip gradients
326
+ scaler.step(optimizer) # optimizer.step
327
+ scaler.update()
328
+ optimizer.zero_grad()
329
+ if ema:
330
+ ema.update(model)
331
+ last_opt_step = ni
332
+
333
+ # Log
334
+ if RANK in {-1, 0}:
335
+ mloss = (mloss * i + loss_items) / (i + 1) # update mean losses
336
+ mem = f'{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G' # (GB)
337
+ pbar.set_description(('%11s' * 2 + '%11.4g' * 6) %
338
+ (f'{epoch}/{epochs - 1}', mem, *mloss, targets.shape[0], imgs.shape[-1]))
339
+ # callbacks.run('on_train_batch_end', model, ni, imgs, targets, paths)
340
+ # if callbacks.stop_training:
341
+ # return
342
+
343
+ # Mosaic plots
344
+ if plots:
345
+ if ni < 3:
346
+ plot_images_and_masks(imgs, targets, masks, paths, save_dir / f'train_batch{ni}.jpg')
347
+ if ni == 10:
348
+ files = sorted(save_dir.glob('train*.jpg'))
349
+ logger.log_images(files, 'Mosaics', epoch)
350
+ # end batch ------------------------------------------------------------------------------------------------
351
+
352
+ # Scheduler
353
+ lr = [x['lr'] for x in optimizer.param_groups] # for loggers
354
+ scheduler.step()
355
+
356
+ if RANK in {-1, 0}:
357
+ # mAP
358
+ # callbacks.run('on_train_epoch_end', epoch=epoch)
359
+ ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'names', 'stride', 'class_weights'])
360
+ final_epoch = (epoch + 1 == epochs) or stopper.possible_stop
361
+ if not noval or final_epoch: # Calculate mAP
362
+ results, maps, _ = validate.run(data_dict,
363
+ batch_size=batch_size // WORLD_SIZE * 2,
364
+ imgsz=imgsz,
365
+ half=amp,
366
+ model=ema.ema,
367
+ single_cls=single_cls,
368
+ dataloader=val_loader,
369
+ save_dir=save_dir,
370
+ plots=False,
371
+ callbacks=callbacks,
372
+ compute_loss=compute_loss,
373
+ mask_downsample_ratio=mask_ratio,
374
+ overlap=overlap)
375
+
376
+ # Update best mAP
377
+ fi = fitness(np.array(results).reshape(1, -1)) # weighted combination of [P, R, [email protected], [email protected]]
378
+ stop = stopper(epoch=epoch, fitness=fi) # early stop check
379
+ if fi > best_fitness:
380
+ best_fitness = fi
381
+ log_vals = list(mloss) + list(results) + lr
382
+ # callbacks.run('on_fit_epoch_end', log_vals, epoch, best_fitness, fi)
383
+ # Log val metrics and media
384
+ metrics_dict = dict(zip(KEYS, log_vals))
385
+ logger.log_metrics(metrics_dict, epoch)
386
+
387
+ # Save model
388
+ if (not nosave) or (final_epoch and not evolve): # if save
389
+ ckpt = {
390
+ 'epoch': epoch,
391
+ 'best_fitness': best_fitness,
392
+ 'model': deepcopy(de_parallel(model)).half(),
393
+ 'ema': deepcopy(ema.ema).half(),
394
+ 'updates': ema.updates,
395
+ 'optimizer': optimizer.state_dict(),
396
+ 'opt': vars(opt),
397
+ 'git': GIT_INFO, # {remote, branch, commit} if a git repo
398
+ 'date': datetime.now().isoformat()}
399
+
400
+ # Save last, best and delete
401
+ torch.save(ckpt, last)
402
+ if best_fitness == fi:
403
+ torch.save(ckpt, best)
404
+ if opt.save_period > 0 and epoch % opt.save_period == 0:
405
+ torch.save(ckpt, w / f'epoch{epoch}.pt')
406
+ logger.log_model(w / f'epoch{epoch}.pt')
407
+ del ckpt
408
+ # callbacks.run('on_model_save', last, epoch, final_epoch, best_fitness, fi)
409
+
410
+ # EarlyStopping
411
+ if RANK != -1: # if DDP training
412
+ broadcast_list = [stop if RANK == 0 else None]
413
+ dist.broadcast_object_list(broadcast_list, 0) # broadcast 'stop' to all ranks
414
+ if RANK != 0:
415
+ stop = broadcast_list[0]
416
+ if stop:
417
+ break # must break all DDP ranks
418
+
419
+ # end epoch ----------------------------------------------------------------------------------------------------
420
+ # end training -----------------------------------------------------------------------------------------------------
421
+ if RANK in {-1, 0}:
422
+ LOGGER.info(f'\n{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.')
423
+ for f in last, best:
424
+ if f.exists():
425
+ strip_optimizer(f) # strip optimizers
426
+ if f is best:
427
+ LOGGER.info(f'\nValidating {f}...')
428
+ results, _, _ = validate.run(
429
+ data_dict,
430
+ batch_size=batch_size // WORLD_SIZE * 2,
431
+ imgsz=imgsz,
432
+ model=attempt_load(f, device).half(),
433
+ iou_thres=0.65 if is_coco else 0.60, # best pycocotools at iou 0.65
434
+ single_cls=single_cls,
435
+ dataloader=val_loader,
436
+ save_dir=save_dir,
437
+ save_json=is_coco,
438
+ verbose=True,
439
+ plots=plots,
440
+ callbacks=callbacks,
441
+ compute_loss=compute_loss,
442
+ mask_downsample_ratio=mask_ratio,
443
+ overlap=overlap) # val best model with plots
444
+ if is_coco:
445
+ # callbacks.run('on_fit_epoch_end', list(mloss) + list(results) + lr, epoch, best_fitness, fi)
446
+ metrics_dict = dict(zip(KEYS, list(mloss) + list(results) + lr))
447
+ logger.log_metrics(metrics_dict, epoch)
448
+
449
+ # callbacks.run('on_train_end', last, best, epoch, results)
450
+ # on train end callback using genericLogger
451
+ logger.log_metrics(dict(zip(KEYS[4:16], results)), epochs)
452
+ if not opt.evolve:
453
+ logger.log_model(best, epoch)
454
+ if plots:
455
+ plot_results_with_masks(file=save_dir / 'results.csv') # save results.png
456
+ files = ['results.png', 'confusion_matrix.png', *(f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R'))]
457
+ files = [(save_dir / f) for f in files if (save_dir / f).exists()] # filter
458
+ LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}")
459
+ logger.log_images(files, 'Results', epoch + 1)
460
+ logger.log_images(sorted(save_dir.glob('val*.jpg')), 'Validation', epoch + 1)
461
+ torch.cuda.empty_cache()
462
+ return results
463
+
464
+
465
+ def parse_opt(known=False):
466
+ parser = argparse.ArgumentParser()
467
+ parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s-seg.pt', help='initial weights path')
468
+ parser.add_argument('--cfg', type=str, default='', help='model.yaml path')
469
+ parser.add_argument('--data', type=str, default=ROOT / 'data/coco128-seg.yaml', help='dataset.yaml path')
470
+ parser.add_argument('--hyp', type=str, default=ROOT / 'data/hyps/hyp.scratch-low.yaml', help='hyperparameters path')
471
+ parser.add_argument('--epochs', type=int, default=100, help='total training epochs')
472
+ parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs, -1 for autobatch')
473
+ parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='train, val image size (pixels)')
474
+ parser.add_argument('--rect', action='store_true', help='rectangular training')
475
+ parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
476
+ parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
477
+ parser.add_argument('--noval', action='store_true', help='only validate final epoch')
478
+ parser.add_argument('--noautoanchor', action='store_true', help='disable AutoAnchor')
479
+ parser.add_argument('--noplots', action='store_true', help='save no plot files')
480
+ parser.add_argument('--evolve', type=int, nargs='?', const=300, help='evolve hyperparameters for x generations')
481
+ parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
482
+ parser.add_argument('--cache', type=str, nargs='?', const='ram', help='image --cache ram/disk')
483
+ parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')
484
+ parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
485
+ parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
486
+ parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class')
487
+ parser.add_argument('--optimizer', type=str, choices=['SGD', 'Adam', 'AdamW'], default='SGD', help='optimizer')
488
+ parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
489
+ parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)')
490
+ parser.add_argument('--project', default=ROOT / 'runs/train-seg', help='save to project/name')
491
+ parser.add_argument('--name', default='exp', help='save to project/name')
492
+ parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
493
+ parser.add_argument('--quad', action='store_true', help='quad dataloader')
494
+ parser.add_argument('--cos-lr', action='store_true', help='cosine LR scheduler')
495
+ parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon')
496
+ parser.add_argument('--patience', type=int, default=100, help='EarlyStopping patience (epochs without improvement)')
497
+ parser.add_argument('--freeze', nargs='+', type=int, default=[0], help='Freeze layers: backbone=10, first3=0 1 2')
498
+ parser.add_argument('--save-period', type=int, default=-1, help='Save checkpoint every x epochs (disabled if < 1)')
499
+ parser.add_argument('--seed', type=int, default=0, help='Global training seed')
500
+ parser.add_argument('--local_rank', type=int, default=-1, help='Automatic DDP Multi-GPU argument, do not modify')
501
+
502
+ # Instance Segmentation Args
503
+ parser.add_argument('--mask-ratio', type=int, default=4, help='Downsample the truth masks to saving memory')
504
+ parser.add_argument('--no-overlap', action='store_true', help='Overlap masks train faster at slightly less mAP')
505
+
506
+ return parser.parse_known_args()[0] if known else parser.parse_args()
507
+
508
+
509
+ def main(opt, callbacks=Callbacks()):
510
+ # Checks
511
+ if RANK in {-1, 0}:
512
+ print_args(vars(opt))
513
+ check_git_status()
514
+ check_requirements(ROOT / 'requirements.txt')
515
+
516
+ # Resume
517
+ if opt.resume and not opt.evolve: # resume from specified or most recent last.pt
518
+ last = Path(check_file(opt.resume) if isinstance(opt.resume, str) else get_latest_run())
519
+ opt_yaml = last.parent.parent / 'opt.yaml' # train options yaml
520
+ opt_data = opt.data # original dataset
521
+ if opt_yaml.is_file():
522
+ with open(opt_yaml, errors='ignore') as f:
523
+ d = yaml.safe_load(f)
524
+ else:
525
+ d = torch.load(last, map_location='cpu')['opt']
526
+ opt = argparse.Namespace(**d) # replace
527
+ opt.cfg, opt.weights, opt.resume = '', str(last), True # reinstate
528
+ if is_url(opt_data):
529
+ opt.data = check_file(opt_data) # avoid HUB resume auth timeout
530
+ else:
531
+ opt.data, opt.cfg, opt.hyp, opt.weights, opt.project = \
532
+ check_file(opt.data), check_yaml(opt.cfg), check_yaml(opt.hyp), str(opt.weights), str(opt.project) # checks
533
+ assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified'
534
+ if opt.evolve:
535
+ if opt.project == str(ROOT / 'runs/train-seg'): # if default project name, rename to runs/evolve-seg
536
+ opt.project = str(ROOT / 'runs/evolve-seg')
537
+ opt.exist_ok, opt.resume = opt.resume, False # pass resume to exist_ok and disable resume
538
+ if opt.name == 'cfg':
539
+ opt.name = Path(opt.cfg).stem # use model.yaml as name
540
+ opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok))
541
+
542
+ # DDP mode
543
+ device = select_device(opt.device, batch_size=opt.batch_size)
544
+ if LOCAL_RANK != -1:
545
+ msg = 'is not compatible with YOLOv5 Multi-GPU DDP training'
546
+ assert not opt.image_weights, f'--image-weights {msg}'
547
+ assert not opt.evolve, f'--evolve {msg}'
548
+ assert opt.batch_size != -1, f'AutoBatch with --batch-size -1 {msg}, please pass a valid --batch-size'
549
+ assert opt.batch_size % WORLD_SIZE == 0, f'--batch-size {opt.batch_size} must be multiple of WORLD_SIZE'
550
+ assert torch.cuda.device_count() > LOCAL_RANK, 'insufficient CUDA devices for DDP command'
551
+ torch.cuda.set_device(LOCAL_RANK)
552
+ device = torch.device('cuda', LOCAL_RANK)
553
+ dist.init_process_group(backend='nccl' if dist.is_nccl_available() else 'gloo')
554
+
555
+ # Train
556
+ if not opt.evolve:
557
+ train(opt.hyp, opt, device, callbacks)
558
+
559
+ # Evolve hyperparameters (optional)
560
+ else:
561
+ # Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit)
562
+ meta = {
563
+ 'lr0': (1, 1e-5, 1e-1), # initial learning rate (SGD=1E-2, Adam=1E-3)
564
+ 'lrf': (1, 0.01, 1.0), # final OneCycleLR learning rate (lr0 * lrf)
565
+ 'momentum': (0.3, 0.6, 0.98), # SGD momentum/Adam beta1
566
+ 'weight_decay': (1, 0.0, 0.001), # optimizer weight decay
567
+ 'warmup_epochs': (1, 0.0, 5.0), # warmup epochs (fractions ok)
568
+ 'warmup_momentum': (1, 0.0, 0.95), # warmup initial momentum
569
+ 'warmup_bias_lr': (1, 0.0, 0.2), # warmup initial bias lr
570
+ 'box': (1, 0.02, 0.2), # box loss gain
571
+ 'cls': (1, 0.2, 4.0), # cls loss gain
572
+ 'cls_pw': (1, 0.5, 2.0), # cls BCELoss positive_weight
573
+ 'obj': (1, 0.2, 4.0), # obj loss gain (scale with pixels)
574
+ 'obj_pw': (1, 0.5, 2.0), # obj BCELoss positive_weight
575
+ 'iou_t': (0, 0.1, 0.7), # IoU training threshold
576
+ 'anchor_t': (1, 2.0, 8.0), # anchor-multiple threshold
577
+ 'anchors': (2, 2.0, 10.0), # anchors per output grid (0 to ignore)
578
+ 'fl_gamma': (0, 0.0, 2.0), # focal loss gamma (efficientDet default gamma=1.5)
579
+ 'hsv_h': (1, 0.0, 0.1), # image HSV-Hue augmentation (fraction)
580
+ 'hsv_s': (1, 0.0, 0.9), # image HSV-Saturation augmentation (fraction)
581
+ 'hsv_v': (1, 0.0, 0.9), # image HSV-Value augmentation (fraction)
582
+ 'degrees': (1, 0.0, 45.0), # image rotation (+/- deg)
583
+ 'translate': (1, 0.0, 0.9), # image translation (+/- fraction)
584
+ 'scale': (1, 0.0, 0.9), # image scale (+/- gain)
585
+ 'shear': (1, 0.0, 10.0), # image shear (+/- deg)
586
+ 'perspective': (0, 0.0, 0.001), # image perspective (+/- fraction), range 0-0.001
587
+ 'flipud': (1, 0.0, 1.0), # image flip up-down (probability)
588
+ 'fliplr': (0, 0.0, 1.0), # image flip left-right (probability)
589
+ 'mosaic': (1, 0.0, 1.0), # image mixup (probability)
590
+ 'mixup': (1, 0.0, 1.0), # image mixup (probability)
591
+ 'copy_paste': (1, 0.0, 1.0)} # segment copy-paste (probability)
592
+
593
+ with open(opt.hyp, errors='ignore') as f:
594
+ hyp = yaml.safe_load(f) # load hyps dict
595
+ if 'anchors' not in hyp: # anchors commented in hyp.yaml
596
+ hyp['anchors'] = 3
597
+ if opt.noautoanchor:
598
+ del hyp['anchors'], meta['anchors']
599
+ opt.noval, opt.nosave, save_dir = True, True, Path(opt.save_dir) # only val/save final epoch
600
+ # ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices
601
+ evolve_yaml, evolve_csv = save_dir / 'hyp_evolve.yaml', save_dir / 'evolve.csv'
602
+ if opt.bucket:
603
+ # download evolve.csv if exists
604
+ subprocess.run([
605
+ 'gsutil',
606
+ 'cp',
607
+ f'gs://{opt.bucket}/evolve.csv',
608
+ str(evolve_csv), ])
609
+
610
+ for _ in range(opt.evolve): # generations to evolve
611
+ if evolve_csv.exists(): # if evolve.csv exists: select best hyps and mutate
612
+ # Select parent(s)
613
+ parent = 'single' # parent selection method: 'single' or 'weighted'
614
+ x = np.loadtxt(evolve_csv, ndmin=2, delimiter=',', skiprows=1)
615
+ n = min(5, len(x)) # number of previous results to consider
616
+ x = x[np.argsort(-fitness(x))][:n] # top n mutations
617
+ w = fitness(x) - fitness(x).min() + 1E-6 # weights (sum > 0)
618
+ if parent == 'single' or len(x) == 1:
619
+ # x = x[random.randint(0, n - 1)] # random selection
620
+ x = x[random.choices(range(n), weights=w)[0]] # weighted selection
621
+ elif parent == 'weighted':
622
+ x = (x * w.reshape(n, 1)).sum(0) / w.sum() # weighted combination
623
+
624
+ # Mutate
625
+ mp, s = 0.8, 0.2 # mutation probability, sigma
626
+ npr = np.random
627
+ npr.seed(int(time.time()))
628
+ g = np.array([meta[k][0] for k in hyp.keys()]) # gains 0-1
629
+ ng = len(meta)
630
+ v = np.ones(ng)
631
+ while all(v == 1): # mutate until a change occurs (prevent duplicates)
632
+ v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0)
633
+ for i, k in enumerate(hyp.keys()): # plt.hist(v.ravel(), 300)
634
+ hyp[k] = float(x[i + 12] * v[i]) # mutate
635
+
636
+ # Constrain to limits
637
+ for k, v in meta.items():
638
+ hyp[k] = max(hyp[k], v[1]) # lower limit
639
+ hyp[k] = min(hyp[k], v[2]) # upper limit
640
+ hyp[k] = round(hyp[k], 5) # significant digits
641
+
642
+ # Train mutation
643
+ results = train(hyp.copy(), opt, device, callbacks)
644
+ callbacks = Callbacks()
645
+ # Write mutation results
646
+ print_mutation(KEYS[4:16], results, hyp.copy(), save_dir, opt.bucket)
647
+
648
+ # Plot results
649
+ plot_evolve(evolve_csv)
650
+ LOGGER.info(f'Hyperparameter evolution finished {opt.evolve} generations\n'
651
+ f"Results saved to {colorstr('bold', save_dir)}\n"
652
+ f'Usage example: $ python train.py --hyp {evolve_yaml}')
653
+
654
+
655
+ def run(**kwargs):
656
+ # Usage: import train; train.run(data='coco128.yaml', imgsz=320, weights='yolov5m.pt')
657
+ opt = parse_opt(True)
658
+ for k, v in kwargs.items():
659
+ setattr(opt, k, v)
660
+ main(opt)
661
+ return opt
662
+
663
+
664
+ if __name__ == '__main__':
665
+ opt = parse_opt()
666
+ main(opt)
TextDetection/segment/tutorial.ipynb ADDED
@@ -0,0 +1,595 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "metadata": {
6
+ "id": "t6MPjfT5NrKQ"
7
+ },
8
+ "source": [
9
+ "<div align=\"center\">\n",
10
+ "\n",
11
+ " <a href=\"https://ultralytics.com/yolov5\" target=\"_blank\">\n",
12
+ " <img width=\"1024\", src=\"https://raw.githubusercontent.com/ultralytics/assets/main/yolov5/v70/splash.png\"></a>\n",
13
+ "\n",
14
+ "\n",
15
+ "<br>\n",
16
+ " <a href=\"https://bit.ly/yolov5-paperspace-notebook\"><img src=\"https://assets.paperspace.io/img/gradient-badge.svg\" alt=\"Run on Gradient\"></a>\n",
17
+ " <a href=\"https://colab.research.google.com/github/ultralytics/yolov5/blob/master/segment/tutorial.ipynb\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"></a>\n",
18
+ " <a href=\"https://www.kaggle.com/ultralytics/yolov5\"><img src=\"https://kaggle.com/static/images/open-in-kaggle.svg\" alt=\"Open In Kaggle\"></a>\n",
19
+ "<br>\n",
20
+ "\n",
21
+ "This <a href=\"https://github.com/ultralytics/yolov5\">YOLOv5</a> πŸš€ notebook by <a href=\"https://ultralytics.com\">Ultralytics</a> presents simple train, validate and predict examples to help start your AI adventure.<br>See <a href=\"https://github.com/ultralytics/yolov5/issues/new/choose\">GitHub</a> for community support or <a href=\"https://ultralytics.com/contact\">contact us</a> for professional support.\n",
22
+ "\n",
23
+ "</div>"
24
+ ]
25
+ },
26
+ {
27
+ "cell_type": "markdown",
28
+ "metadata": {
29
+ "id": "7mGmQbAO5pQb"
30
+ },
31
+ "source": [
32
+ "# Setup\n",
33
+ "\n",
34
+ "Clone GitHub [repository](https://github.com/ultralytics/yolov5), install [dependencies](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) and check PyTorch and GPU."
35
+ ]
36
+ },
37
+ {
38
+ "cell_type": "code",
39
+ "execution_count": null,
40
+ "metadata": {
41
+ "colab": {
42
+ "base_uri": "https://localhost:8080/"
43
+ },
44
+ "id": "wbvMlHd_QwMG",
45
+ "outputId": "171b23f0-71b9-4cbf-b666-6fa2ecef70c8"
46
+ },
47
+ "outputs": [
48
+ {
49
+ "output_type": "stream",
50
+ "name": "stderr",
51
+ "text": [
52
+ "YOLOv5 πŸš€ v7.0-2-gc9d47ae Python-3.7.15 torch-1.12.1+cu113 CUDA:0 (Tesla T4, 15110MiB)\n"
53
+ ]
54
+ },
55
+ {
56
+ "output_type": "stream",
57
+ "name": "stdout",
58
+ "text": [
59
+ "Setup complete βœ… (2 CPUs, 12.7 GB RAM, 22.6/78.2 GB disk)\n"
60
+ ]
61
+ }
62
+ ],
63
+ "source": [
64
+ "!git clone https://github.com/ultralytics/yolov5 # clone\n",
65
+ "%cd yolov5\n",
66
+ "%pip install -qr requirements.txt comet_ml # install\n",
67
+ "\n",
68
+ "import torch\n",
69
+ "import utils\n",
70
+ "display = utils.notebook_init() # checks"
71
+ ]
72
+ },
73
+ {
74
+ "cell_type": "markdown",
75
+ "metadata": {
76
+ "id": "4JnkELT0cIJg"
77
+ },
78
+ "source": [
79
+ "# 1. Predict\n",
80
+ "\n",
81
+ "`segment/predict.py` runs YOLOv5 instance segmentation inference on a variety of sources, downloading models automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases), and saving results to `runs/predict`. Example inference sources are:\n",
82
+ "\n",
83
+ "```shell\n",
84
+ "python segment/predict.py --source 0 # webcam\n",
85
+ " img.jpg # image \n",
86
+ " vid.mp4 # video\n",
87
+ " screen # screenshot\n",
88
+ " path/ # directory\n",
89
+ " 'path/*.jpg' # glob\n",
90
+ " 'https://youtu.be/Zgi9g1ksQHc' # YouTube\n",
91
+ " 'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream\n",
92
+ "```"
93
+ ]
94
+ },
95
+ {
96
+ "cell_type": "code",
97
+ "execution_count": null,
98
+ "metadata": {
99
+ "colab": {
100
+ "base_uri": "https://localhost:8080/"
101
+ },
102
+ "id": "zR9ZbuQCH7FX",
103
+ "outputId": "3f67f1c7-f15e-4fa5-d251-967c3b77eaad"
104
+ },
105
+ "outputs": [
106
+ {
107
+ "output_type": "stream",
108
+ "name": "stdout",
109
+ "text": [
110
+ "\u001b[34m\u001b[1msegment/predict: \u001b[0mweights=['yolov5s-seg.pt'], source=data/images, data=data/coco128.yaml, imgsz=[640, 640], conf_thres=0.25, iou_thres=0.45, max_det=1000, device=, view_img=False, save_txt=False, save_conf=False, save_crop=False, nosave=False, classes=None, agnostic_nms=False, augment=False, visualize=False, update=False, project=runs/predict-seg, name=exp, exist_ok=False, line_thickness=3, hide_labels=False, hide_conf=False, half=False, dnn=False, vid_stride=1, retina_masks=False\n",
111
+ "YOLOv5 πŸš€ v7.0-2-gc9d47ae Python-3.7.15 torch-1.12.1+cu113 CUDA:0 (Tesla T4, 15110MiB)\n",
112
+ "\n",
113
+ "Downloading https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s-seg.pt to yolov5s-seg.pt...\n",
114
+ "100% 14.9M/14.9M [00:01<00:00, 12.0MB/s]\n",
115
+ "\n",
116
+ "Fusing layers... \n",
117
+ "YOLOv5s-seg summary: 224 layers, 7611485 parameters, 0 gradients, 26.4 GFLOPs\n",
118
+ "image 1/2 /content/yolov5/data/images/bus.jpg: 640x480 4 persons, 1 bus, 18.2ms\n",
119
+ "image 2/2 /content/yolov5/data/images/zidane.jpg: 384x640 2 persons, 1 tie, 13.4ms\n",
120
+ "Speed: 0.5ms pre-process, 15.8ms inference, 18.5ms NMS per image at shape (1, 3, 640, 640)\n",
121
+ "Results saved to \u001b[1mruns/predict-seg/exp\u001b[0m\n"
122
+ ]
123
+ }
124
+ ],
125
+ "source": [
126
+ "!python segment/predict.py --weights yolov5s-seg.pt --img 640 --conf 0.25 --source data/images\n",
127
+ "#display.Image(filename='runs/predict-seg/exp/zidane.jpg', width=600)"
128
+ ]
129
+ },
130
+ {
131
+ "cell_type": "markdown",
132
+ "metadata": {
133
+ "id": "hkAzDWJ7cWTr"
134
+ },
135
+ "source": [
136
+ "&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;\n",
137
+ "<img align=\"left\" src=\"https://user-images.githubusercontent.com/26833433/199030123-08c72f8d-6871-4116-8ed3-c373642cf28e.jpg\" width=\"600\">"
138
+ ]
139
+ },
140
+ {
141
+ "cell_type": "markdown",
142
+ "metadata": {
143
+ "id": "0eq1SMWl6Sfn"
144
+ },
145
+ "source": [
146
+ "# 2. Validate\n",
147
+ "Validate a model's accuracy on the [COCO](https://cocodataset.org/#home) dataset's `val` or `test` splits. Models are downloaded automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases). To show results by class use the `--verbose` flag."
148
+ ]
149
+ },
150
+ {
151
+ "cell_type": "code",
152
+ "execution_count": null,
153
+ "metadata": {
154
+ "colab": {
155
+ "base_uri": "https://localhost:8080/"
156
+ },
157
+ "id": "WQPtK1QYVaD_",
158
+ "outputId": "9d751d8c-bee8-4339-cf30-9854ca530449"
159
+ },
160
+ "outputs": [
161
+ {
162
+ "output_type": "stream",
163
+ "name": "stdout",
164
+ "text": [
165
+ "Downloading https://github.com/ultralytics/yolov5/releases/download/v1.0/coco2017labels-segments.zip ...\n",
166
+ "Downloading http://images.cocodataset.org/zips/val2017.zip ...\n",
167
+ "######################################################################## 100.0%\n",
168
+ "######################################################################## 100.0%\n"
169
+ ]
170
+ }
171
+ ],
172
+ "source": [
173
+ "# Download COCO val\n",
174
+ "!bash data/scripts/get_coco.sh --val --segments # download (780M - 5000 images)"
175
+ ]
176
+ },
177
+ {
178
+ "cell_type": "code",
179
+ "execution_count": null,
180
+ "metadata": {
181
+ "colab": {
182
+ "base_uri": "https://localhost:8080/"
183
+ },
184
+ "id": "X58w8JLpMnjH",
185
+ "outputId": "a140d67a-02da-479e-9ddb-7d54bf9e407a"
186
+ },
187
+ "outputs": [
188
+ {
189
+ "output_type": "stream",
190
+ "name": "stdout",
191
+ "text": [
192
+ "\u001b[34m\u001b[1msegment/val: \u001b[0mdata=/content/yolov5/data/coco.yaml, weights=['yolov5s-seg.pt'], batch_size=32, imgsz=640, conf_thres=0.001, iou_thres=0.6, max_det=300, task=val, device=, workers=8, single_cls=False, augment=False, verbose=False, save_txt=False, save_hybrid=False, save_conf=False, save_json=False, project=runs/val-seg, name=exp, exist_ok=False, half=True, dnn=False\n",
193
+ "YOLOv5 πŸš€ v7.0-2-gc9d47ae Python-3.7.15 torch-1.12.1+cu113 CUDA:0 (Tesla T4, 15110MiB)\n",
194
+ "\n",
195
+ "Fusing layers... \n",
196
+ "YOLOv5s-seg summary: 224 layers, 7611485 parameters, 0 gradients, 26.4 GFLOPs\n",
197
+ "\u001b[34m\u001b[1mval: \u001b[0mScanning /content/datasets/coco/val2017... 4952 images, 48 backgrounds, 0 corrupt: 100% 5000/5000 [00:03<00:00, 1361.31it/s]\n",
198
+ "\u001b[34m\u001b[1mval: \u001b[0mNew cache created: /content/datasets/coco/val2017.cache\n",
199
+ " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100% 157/157 [01:54<00:00, 1.37it/s]\n",
200
+ " all 5000 36335 0.673 0.517 0.566 0.373 0.672 0.49 0.532 0.319\n",
201
+ "Speed: 0.6ms pre-process, 4.4ms inference, 2.9ms NMS per image at shape (32, 3, 640, 640)\n",
202
+ "Results saved to \u001b[1mruns/val-seg/exp\u001b[0m\n"
203
+ ]
204
+ }
205
+ ],
206
+ "source": [
207
+ "# Validate YOLOv5s-seg on COCO val\n",
208
+ "!python segment/val.py --weights yolov5s-seg.pt --data coco.yaml --img 640 --half"
209
+ ]
210
+ },
211
+ {
212
+ "cell_type": "markdown",
213
+ "metadata": {
214
+ "id": "ZY2VXXXu74w5"
215
+ },
216
+ "source": [
217
+ "# 3. Train\n",
218
+ "\n",
219
+ "<p align=\"\"><a href=\"https://roboflow.com/?ref=ultralytics\"><img width=\"1000\" src=\"https://github.com/ultralytics/assets/raw/main/im/integrations-loop.png\"/></a></p>\n",
220
+ "Close the active learning loop by sampling images from your inference conditions with the `roboflow` pip package\n",
221
+ "<br><br>\n",
222
+ "\n",
223
+ "Train a YOLOv5s-seg model on the [COCO128](https://www.kaggle.com/ultralytics/coco128) dataset with `--data coco128-seg.yaml`, starting from pretrained `--weights yolov5s-seg.pt`, or from randomly initialized `--weights '' --cfg yolov5s-seg.yaml`.\n",
224
+ "\n",
225
+ "- **Pretrained [Models](https://github.com/ultralytics/yolov5/tree/master/models)** are downloaded\n",
226
+ "automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases)\n",
227
+ "- **[Datasets](https://github.com/ultralytics/yolov5/tree/master/data)** available for autodownload include: [COCO](https://github.com/ultralytics/yolov5/blob/master/data/coco.yaml), [COCO128](https://github.com/ultralytics/yolov5/blob/master/data/coco128.yaml), [VOC](https://github.com/ultralytics/yolov5/blob/master/data/VOC.yaml), [Argoverse](https://github.com/ultralytics/yolov5/blob/master/data/Argoverse.yaml), [VisDrone](https://github.com/ultralytics/yolov5/blob/master/data/VisDrone.yaml), [GlobalWheat](https://github.com/ultralytics/yolov5/blob/master/data/GlobalWheat2020.yaml), [xView](https://github.com/ultralytics/yolov5/blob/master/data/xView.yaml), [Objects365](https://github.com/ultralytics/yolov5/blob/master/data/Objects365.yaml), [SKU-110K](https://github.com/ultralytics/yolov5/blob/master/data/SKU-110K.yaml).\n",
228
+ "- **Training Results** are saved to `runs/train-seg/` with incrementing run directories, i.e. `runs/train-seg/exp2`, `runs/train-seg/exp3` etc.\n",
229
+ "<br><br>\n",
230
+ "\n",
231
+ "A **Mosaic Dataloader** is used for training which combines 4 images into 1 mosaic.\n",
232
+ "\n",
233
+ "## Train on Custom Data with Roboflow 🌟 NEW\n",
234
+ "\n",
235
+ "[Roboflow](https://roboflow.com/?ref=ultralytics) enables you to easily **organize, label, and prepare** a high quality dataset with your own custom data. Roboflow also makes it easy to establish an active learning pipeline, collaborate with your team on dataset improvement, and integrate directly into your model building workflow with the `roboflow` pip package.\n",
236
+ "\n",
237
+ "- Custom Training Example: [https://blog.roboflow.com/train-yolov5-instance-segmentation-custom-dataset/](https://blog.roboflow.com/train-yolov5-instance-segmentation-custom-dataset/?ref=ultralytics)\n",
238
+ "- Custom Training Notebook: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1JTz7kpmHsg-5qwVz2d2IH3AaenI1tv0N?usp=sharing)\n",
239
+ "<br>\n",
240
+ "\n",
241
+ "<p align=\"\"><a href=\"https://roboflow.com/?ref=ultralytics\"><img width=\"480\" src=\"https://robflow-public-assets.s3.amazonaws.com/how-to-train-yolov5-segmentation-annotation.gif\"/></a></p>Label images lightning fast (including with model-assisted labeling)"
242
+ ]
243
+ },
244
+ {
245
+ "cell_type": "code",
246
+ "execution_count": null,
247
+ "metadata": {
248
+ "id": "i3oKtE4g-aNn"
249
+ },
250
+ "outputs": [],
251
+ "source": [
252
+ "#@title Select YOLOv5 πŸš€ logger {run: 'auto'}\n",
253
+ "logger = 'Comet' #@param ['Comet', 'ClearML', 'TensorBoard']\n",
254
+ "\n",
255
+ "if logger == 'Comet':\n",
256
+ " %pip install -q comet_ml\n",
257
+ " import comet_ml; comet_ml.init()\n",
258
+ "elif logger == 'ClearML':\n",
259
+ " %pip install -q clearml\n",
260
+ " import clearml; clearml.browser_login()\n",
261
+ "elif logger == 'TensorBoard':\n",
262
+ " %load_ext tensorboard\n",
263
+ " %tensorboard --logdir runs/train"
264
+ ]
265
+ },
266
+ {
267
+ "cell_type": "code",
268
+ "execution_count": null,
269
+ "metadata": {
270
+ "colab": {
271
+ "base_uri": "https://localhost:8080/"
272
+ },
273
+ "id": "1NcFxRcFdJ_O",
274
+ "outputId": "3a3e0cf7-e79c-47a5-c8e7-2d26eeeab988"
275
+ },
276
+ "outputs": [
277
+ {
278
+ "output_type": "stream",
279
+ "name": "stdout",
280
+ "text": [
281
+ "\u001b[34m\u001b[1msegment/train: \u001b[0mweights=yolov5s-seg.pt, cfg=, data=coco128-seg.yaml, hyp=data/hyps/hyp.scratch-low.yaml, epochs=3, batch_size=16, imgsz=640, rect=False, resume=False, nosave=False, noval=False, noautoanchor=False, noplots=False, evolve=None, bucket=, cache=ram, image_weights=False, device=, multi_scale=False, single_cls=False, optimizer=SGD, sync_bn=False, workers=8, project=runs/train-seg, name=exp, exist_ok=False, quad=False, cos_lr=False, label_smoothing=0.0, patience=100, freeze=[0], save_period=-1, seed=0, local_rank=-1, mask_ratio=4, no_overlap=False\n",
282
+ "\u001b[34m\u001b[1mgithub: \u001b[0mup to date with https://github.com/ultralytics/yolov5 βœ…\n",
283
+ "YOLOv5 πŸš€ v7.0-2-gc9d47ae Python-3.7.15 torch-1.12.1+cu113 CUDA:0 (Tesla T4, 15110MiB)\n",
284
+ "\n",
285
+ "\u001b[34m\u001b[1mhyperparameters: \u001b[0mlr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0\n",
286
+ "\u001b[34m\u001b[1mTensorBoard: \u001b[0mStart with 'tensorboard --logdir runs/train-seg', view at http://localhost:6006/\n",
287
+ "\n",
288
+ "Dataset not found ⚠️, missing paths ['/content/datasets/coco128-seg/images/train2017']\n",
289
+ "Downloading https://ultralytics.com/assets/coco128-seg.zip to coco128-seg.zip...\n",
290
+ "100% 6.79M/6.79M [00:01<00:00, 6.73MB/s]\n",
291
+ "Dataset download success βœ… (1.9s), saved to \u001b[1m/content/datasets\u001b[0m\n",
292
+ "\n",
293
+ " from n params module arguments \n",
294
+ " 0 -1 1 3520 models.common.Conv [3, 32, 6, 2, 2] \n",
295
+ " 1 -1 1 18560 models.common.Conv [32, 64, 3, 2] \n",
296
+ " 2 -1 1 18816 models.common.C3 [64, 64, 1] \n",
297
+ " 3 -1 1 73984 models.common.Conv [64, 128, 3, 2] \n",
298
+ " 4 -1 2 115712 models.common.C3 [128, 128, 2] \n",
299
+ " 5 -1 1 295424 models.common.Conv [128, 256, 3, 2] \n",
300
+ " 6 -1 3 625152 models.common.C3 [256, 256, 3] \n",
301
+ " 7 -1 1 1180672 models.common.Conv [256, 512, 3, 2] \n",
302
+ " 8 -1 1 1182720 models.common.C3 [512, 512, 1] \n",
303
+ " 9 -1 1 656896 models.common.SPPF [512, 512, 5] \n",
304
+ " 10 -1 1 131584 models.common.Conv [512, 256, 1, 1] \n",
305
+ " 11 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] \n",
306
+ " 12 [-1, 6] 1 0 models.common.Concat [1] \n",
307
+ " 13 -1 1 361984 models.common.C3 [512, 256, 1, False] \n",
308
+ " 14 -1 1 33024 models.common.Conv [256, 128, 1, 1] \n",
309
+ " 15 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] \n",
310
+ " 16 [-1, 4] 1 0 models.common.Concat [1] \n",
311
+ " 17 -1 1 90880 models.common.C3 [256, 128, 1, False] \n",
312
+ " 18 -1 1 147712 models.common.Conv [128, 128, 3, 2] \n",
313
+ " 19 [-1, 14] 1 0 models.common.Concat [1] \n",
314
+ " 20 -1 1 296448 models.common.C3 [256, 256, 1, False] \n",
315
+ " 21 -1 1 590336 models.common.Conv [256, 256, 3, 2] \n",
316
+ " 22 [-1, 10] 1 0 models.common.Concat [1] \n",
317
+ " 23 -1 1 1182720 models.common.C3 [512, 512, 1, False] \n",
318
+ " 24 [17, 20, 23] 1 615133 models.yolo.Segment [80, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], 32, 128, [128, 256, 512]]\n",
319
+ "Model summary: 225 layers, 7621277 parameters, 7621277 gradients, 26.6 GFLOPs\n",
320
+ "\n",
321
+ "Transferred 367/367 items from yolov5s-seg.pt\n",
322
+ "\u001b[34m\u001b[1mAMP: \u001b[0mchecks passed βœ…\n",
323
+ "\u001b[34m\u001b[1moptimizer:\u001b[0m SGD(lr=0.01) with parameter groups 60 weight(decay=0.0), 63 weight(decay=0.0005), 63 bias\n",
324
+ "\u001b[34m\u001b[1malbumentations: \u001b[0mBlur(p=0.01, blur_limit=(3, 7)), MedianBlur(p=0.01, blur_limit=(3, 7)), ToGray(p=0.01), CLAHE(p=0.01, clip_limit=(1, 4.0), tile_grid_size=(8, 8))\n",
325
+ "\u001b[34m\u001b[1mtrain: \u001b[0mScanning /content/datasets/coco128-seg/labels/train2017... 126 images, 2 backgrounds, 0 corrupt: 100% 128/128 [00:00<00:00, 1389.59it/s]\n",
326
+ "\u001b[34m\u001b[1mtrain: \u001b[0mNew cache created: /content/datasets/coco128-seg/labels/train2017.cache\n",
327
+ "\u001b[34m\u001b[1mtrain: \u001b[0mCaching images (0.1GB ram): 100% 128/128 [00:00<00:00, 238.86it/s]\n",
328
+ "\u001b[34m\u001b[1mval: \u001b[0mScanning /content/datasets/coco128-seg/labels/train2017.cache... 126 images, 2 backgrounds, 0 corrupt: 100% 128/128 [00:00<?, ?it/s]\n",
329
+ "\u001b[34m\u001b[1mval: \u001b[0mCaching images (0.1GB ram): 100% 128/128 [00:01<00:00, 98.90it/s]\n",
330
+ "\n",
331
+ "\u001b[34m\u001b[1mAutoAnchor: \u001b[0m4.27 anchors/target, 0.994 Best Possible Recall (BPR). Current anchors are a good fit to dataset βœ…\n",
332
+ "Plotting labels to runs/train-seg/exp/labels.jpg... \n",
333
+ "Image sizes 640 train, 640 val\n",
334
+ "Using 2 dataloader workers\n",
335
+ "Logging results to \u001b[1mruns/train-seg/exp\u001b[0m\n",
336
+ "Starting training for 3 epochs...\n",
337
+ "\n",
338
+ " Epoch GPU_mem box_loss seg_loss obj_loss cls_loss Instances Size\n",
339
+ " 0/2 4.92G 0.0417 0.04646 0.06066 0.02126 192 640: 100% 8/8 [00:08<00:00, 1.10s/it]\n",
340
+ " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100% 4/4 [00:02<00:00, 1.81it/s]\n",
341
+ " all 128 929 0.737 0.649 0.715 0.492 0.719 0.617 0.658 0.408\n",
342
+ "\n",
343
+ " Epoch GPU_mem box_loss seg_loss obj_loss cls_loss Instances Size\n",
344
+ " 1/2 6.29G 0.04157 0.04503 0.05772 0.01777 208 640: 100% 8/8 [00:09<00:00, 1.21s/it]\n",
345
+ " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100% 4/4 [00:02<00:00, 1.87it/s]\n",
346
+ " all 128 929 0.756 0.674 0.738 0.506 0.725 0.64 0.68 0.422\n",
347
+ "\n",
348
+ " Epoch GPU_mem box_loss seg_loss obj_loss cls_loss Instances Size\n",
349
+ " 2/2 6.29G 0.0425 0.04793 0.06784 0.01863 161 640: 100% 8/8 [00:03<00:00, 2.02it/s]\n",
350
+ " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100% 4/4 [00:02<00:00, 1.88it/s]\n",
351
+ " all 128 929 0.736 0.694 0.747 0.522 0.769 0.622 0.683 0.427\n",
352
+ "\n",
353
+ "3 epochs completed in 0.009 hours.\n",
354
+ "Optimizer stripped from runs/train-seg/exp/weights/last.pt, 15.6MB\n",
355
+ "Optimizer stripped from runs/train-seg/exp/weights/best.pt, 15.6MB\n",
356
+ "\n",
357
+ "Validating runs/train-seg/exp/weights/best.pt...\n",
358
+ "Fusing layers... \n",
359
+ "Model summary: 165 layers, 7611485 parameters, 0 gradients, 26.4 GFLOPs\n",
360
+ " Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95): 100% 4/4 [00:06<00:00, 1.59s/it]\n",
361
+ " all 128 929 0.738 0.694 0.746 0.522 0.759 0.625 0.682 0.426\n",
362
+ " person 128 254 0.845 0.756 0.836 0.55 0.861 0.669 0.759 0.407\n",
363
+ " bicycle 128 6 0.475 0.333 0.549 0.341 0.711 0.333 0.526 0.322\n",
364
+ " car 128 46 0.612 0.565 0.539 0.257 0.555 0.435 0.477 0.171\n",
365
+ " motorcycle 128 5 0.73 0.8 0.752 0.571 0.747 0.8 0.752 0.42\n",
366
+ " airplane 128 6 1 0.943 0.995 0.732 0.92 0.833 0.839 0.555\n",
367
+ " bus 128 7 0.677 0.714 0.722 0.653 0.711 0.714 0.722 0.593\n",
368
+ " train 128 3 1 0.951 0.995 0.551 1 0.884 0.995 0.781\n",
369
+ " truck 128 12 0.555 0.417 0.457 0.285 0.624 0.417 0.397 0.277\n",
370
+ " boat 128 6 0.624 0.5 0.584 0.186 1 0.326 0.412 0.133\n",
371
+ " traffic light 128 14 0.513 0.302 0.411 0.247 0.435 0.214 0.376 0.251\n",
372
+ " stop sign 128 2 0.824 1 0.995 0.796 0.906 1 0.995 0.747\n",
373
+ " bench 128 9 0.75 0.667 0.763 0.367 0.724 0.585 0.698 0.209\n",
374
+ " bird 128 16 0.961 1 0.995 0.686 0.918 0.938 0.91 0.525\n",
375
+ " cat 128 4 0.771 0.857 0.945 0.752 0.76 0.8 0.945 0.728\n",
376
+ " dog 128 9 0.987 0.778 0.963 0.681 1 0.705 0.89 0.574\n",
377
+ " horse 128 2 0.703 1 0.995 0.697 0.759 1 0.995 0.249\n",
378
+ " elephant 128 17 0.916 0.882 0.93 0.691 0.811 0.765 0.829 0.537\n",
379
+ " bear 128 1 0.664 1 0.995 0.995 0.701 1 0.995 0.895\n",
380
+ " zebra 128 4 0.864 1 0.995 0.921 0.879 1 0.995 0.804\n",
381
+ " giraffe 128 9 0.883 0.889 0.94 0.683 0.845 0.778 0.78 0.463\n",
382
+ " backpack 128 6 1 0.59 0.701 0.372 1 0.474 0.52 0.252\n",
383
+ " umbrella 128 18 0.654 0.839 0.887 0.52 0.517 0.556 0.427 0.229\n",
384
+ " handbag 128 19 0.54 0.211 0.408 0.221 0.796 0.206 0.396 0.196\n",
385
+ " tie 128 7 0.864 0.857 0.857 0.577 0.925 0.857 0.857 0.534\n",
386
+ " suitcase 128 4 0.716 1 0.945 0.647 0.767 1 0.945 0.634\n",
387
+ " frisbee 128 5 0.708 0.8 0.761 0.643 0.737 0.8 0.761 0.501\n",
388
+ " skis 128 1 0.691 1 0.995 0.796 0.761 1 0.995 0.199\n",
389
+ " snowboard 128 7 0.918 0.857 0.904 0.604 0.32 0.286 0.235 0.137\n",
390
+ " sports ball 128 6 0.902 0.667 0.701 0.466 0.727 0.5 0.497 0.471\n",
391
+ " kite 128 10 0.586 0.4 0.511 0.231 0.663 0.394 0.417 0.139\n",
392
+ " baseball bat 128 4 0.359 0.5 0.401 0.169 0.631 0.5 0.526 0.133\n",
393
+ " baseball glove 128 7 1 0.519 0.58 0.327 0.687 0.286 0.455 0.328\n",
394
+ " skateboard 128 5 0.729 0.8 0.862 0.631 0.599 0.6 0.604 0.379\n",
395
+ " tennis racket 128 7 0.57 0.714 0.645 0.448 0.608 0.714 0.645 0.412\n",
396
+ " bottle 128 18 0.469 0.393 0.537 0.357 0.661 0.389 0.543 0.349\n",
397
+ " wine glass 128 16 0.677 0.938 0.866 0.441 0.53 0.625 0.67 0.334\n",
398
+ " cup 128 36 0.777 0.722 0.812 0.466 0.725 0.583 0.762 0.467\n",
399
+ " fork 128 6 0.948 0.333 0.425 0.27 0.527 0.167 0.18 0.102\n",
400
+ " knife 128 16 0.757 0.587 0.669 0.458 0.79 0.5 0.552 0.34\n",
401
+ " spoon 128 22 0.74 0.364 0.559 0.269 0.925 0.364 0.513 0.213\n",
402
+ " bowl 128 28 0.766 0.714 0.725 0.559 0.803 0.584 0.665 0.353\n",
403
+ " banana 128 1 0.408 1 0.995 0.398 0.539 1 0.995 0.497\n",
404
+ " sandwich 128 2 1 0 0.695 0.536 1 0 0.498 0.448\n",
405
+ " orange 128 4 0.467 1 0.995 0.693 0.518 1 0.995 0.663\n",
406
+ " broccoli 128 11 0.462 0.455 0.383 0.259 0.548 0.455 0.384 0.256\n",
407
+ " carrot 128 24 0.631 0.875 0.77 0.533 0.757 0.909 0.853 0.499\n",
408
+ " hot dog 128 2 0.555 1 0.995 0.995 0.578 1 0.995 0.796\n",
409
+ " pizza 128 5 0.89 0.8 0.962 0.796 1 0.778 0.962 0.766\n",
410
+ " donut 128 14 0.695 1 0.893 0.772 0.704 1 0.893 0.696\n",
411
+ " cake 128 4 0.826 1 0.995 0.92 0.862 1 0.995 0.846\n",
412
+ " chair 128 35 0.53 0.571 0.613 0.336 0.67 0.6 0.538 0.271\n",
413
+ " couch 128 6 0.972 0.667 0.833 0.627 1 0.62 0.696 0.394\n",
414
+ " potted plant 128 14 0.7 0.857 0.883 0.552 0.836 0.857 0.883 0.473\n",
415
+ " bed 128 3 0.979 0.667 0.83 0.366 1 0 0.83 0.373\n",
416
+ " dining table 128 13 0.775 0.308 0.505 0.364 0.644 0.231 0.25 0.0804\n",
417
+ " toilet 128 2 0.836 1 0.995 0.846 0.887 1 0.995 0.797\n",
418
+ " tv 128 2 0.6 1 0.995 0.846 0.655 1 0.995 0.896\n",
419
+ " laptop 128 3 0.822 0.333 0.445 0.307 1 0 0.392 0.12\n",
420
+ " mouse 128 2 1 0 0 0 1 0 0 0\n",
421
+ " remote 128 8 0.745 0.5 0.62 0.459 0.821 0.5 0.624 0.449\n",
422
+ " cell phone 128 8 0.686 0.375 0.502 0.272 0.488 0.25 0.28 0.132\n",
423
+ " microwave 128 3 0.831 1 0.995 0.722 0.867 1 0.995 0.592\n",
424
+ " oven 128 5 0.439 0.4 0.435 0.294 0.823 0.6 0.645 0.418\n",
425
+ " sink 128 6 0.677 0.5 0.565 0.448 0.722 0.5 0.46 0.362\n",
426
+ " refrigerator 128 5 0.533 0.8 0.783 0.524 0.558 0.8 0.783 0.527\n",
427
+ " book 128 29 0.732 0.379 0.423 0.196 0.69 0.207 0.38 0.131\n",
428
+ " clock 128 9 0.889 0.778 0.917 0.677 0.908 0.778 0.875 0.604\n",
429
+ " vase 128 2 0.375 1 0.995 0.995 0.455 1 0.995 0.796\n",
430
+ " scissors 128 1 1 0 0.0166 0.00166 1 0 0 0\n",
431
+ " teddy bear 128 21 0.813 0.829 0.841 0.457 0.826 0.678 0.786 0.422\n",
432
+ " toothbrush 128 5 0.806 1 0.995 0.733 0.991 1 0.995 0.628\n",
433
+ "Results saved to \u001b[1mruns/train-seg/exp\u001b[0m\n"
434
+ ]
435
+ }
436
+ ],
437
+ "source": [
438
+ "# Train YOLOv5s on COCO128 for 3 epochs\n",
439
+ "!python segment/train.py --img 640 --batch 16 --epochs 3 --data coco128-seg.yaml --weights yolov5s-seg.pt --cache"
440
+ ]
441
+ },
442
+ {
443
+ "cell_type": "markdown",
444
+ "metadata": {
445
+ "id": "15glLzbQx5u0"
446
+ },
447
+ "source": [
448
+ "# 4. Visualize"
449
+ ]
450
+ },
451
+ {
452
+ "cell_type": "markdown",
453
+ "metadata": {
454
+ "id": "nWOsI5wJR1o3"
455
+ },
456
+ "source": [
457
+ "## Comet Logging and Visualization 🌟 NEW\n",
458
+ "\n",
459
+ "[Comet](https://www.comet.com/site/lp/yolov5-with-comet/?utm_source=yolov5&utm_medium=partner&utm_campaign=partner_yolov5_2022&utm_content=yolov5_colab) is now fully integrated with YOLOv5. Track and visualize model metrics in real time, save your hyperparameters, datasets, and model checkpoints, and visualize your model predictions with [Comet Custom Panels](https://www.comet.com/docs/v2/guides/comet-dashboard/code-panels/about-panels/?utm_source=yolov5&utm_medium=partner&utm_campaign=partner_yolov5_2022&utm_content=yolov5_colab)! Comet makes sure you never lose track of your work and makes it easy to share results and collaborate across teams of all sizes!\n",
460
+ "\n",
461
+ "Getting started is easy:\n",
462
+ "```shell\n",
463
+ "pip install comet_ml # 1. install\n",
464
+ "export COMET_API_KEY=<Your API Key> # 2. paste API key\n",
465
+ "python train.py --img 640 --epochs 3 --data coco128.yaml --weights yolov5s.pt # 3. train\n",
466
+ "```\n",
467
+ "To learn more about all of the supported Comet features for this integration, check out the [Comet Tutorial](https://docs.ultralytics.com/yolov5/tutorials/comet_logging_integration). If you'd like to learn more about Comet, head over to our [documentation](https://www.comet.com/docs/v2/?utm_source=yolov5&utm_medium=partner&utm_campaign=partner_yolov5_2022&utm_content=yolov5_colab). Get started by trying out the Comet Colab Notebook:\n",
468
+ "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1RG0WOQyxlDlo5Km8GogJpIEJlg_5lyYO?usp=sharing)\n",
469
+ "\n",
470
+ "<a href=\"https://bit.ly/yolov5-readme-comet2\">\n",
471
+ "<img alt=\"Comet Dashboard\" src=\"https://user-images.githubusercontent.com/26833433/202851203-164e94e1-2238-46dd-91f8-de020e9d6b41.png\" width=\"1280\"/></a>"
472
+ ]
473
+ },
474
+ {
475
+ "cell_type": "markdown",
476
+ "metadata": {
477
+ "id": "Lay2WsTjNJzP"
478
+ },
479
+ "source": [
480
+ "## ClearML Logging and Automation 🌟 NEW\n",
481
+ "\n",
482
+ "[ClearML](https://cutt.ly/yolov5-notebook-clearml) is completely integrated into YOLOv5 to track your experimentation, manage dataset versions and even remotely execute training runs. To enable ClearML (check cells above):\n",
483
+ "\n",
484
+ "- `pip install clearml`\n",
485
+ "- run `clearml-init` to connect to a ClearML server (**deploy your own [open-source server](https://github.com/allegroai/clearml-server)**, or use our [free hosted server](https://cutt.ly/yolov5-notebook-clearml))\n",
486
+ "\n",
487
+ "You'll get all the great expected features from an experiment manager: live updates, model upload, experiment comparison etc. but ClearML also tracks uncommitted changes and installed packages for example. Thanks to that ClearML Tasks (which is what we call experiments) are also reproducible on different machines! With only 1 extra line, we can schedule a YOLOv5 training task on a queue to be executed by any number of ClearML Agents (workers).\n",
488
+ "\n",
489
+ "You can use ClearML Data to version your dataset and then pass it to YOLOv5 simply using its unique ID. This will help you keep track of your data without adding extra hassle. Explore the [ClearML Tutorial](https://docs.ultralytics.com/yolov5/tutorials/clearml_logging_integration) for details!\n",
490
+ "\n",
491
+ "<a href=\"https://cutt.ly/yolov5-notebook-clearml\">\n",
492
+ "<img alt=\"ClearML Experiment Management UI\" src=\"https://github.com/thepycoder/clearml_screenshots/raw/main/scalars.jpg\" width=\"1280\"/></a>"
493
+ ]
494
+ },
495
+ {
496
+ "cell_type": "markdown",
497
+ "metadata": {
498
+ "id": "-WPvRbS5Swl6"
499
+ },
500
+ "source": [
501
+ "## Local Logging\n",
502
+ "\n",
503
+ "Training results are automatically logged with [Tensorboard](https://www.tensorflow.org/tensorboard) and [CSV](https://github.com/ultralytics/yolov5/pull/4148) loggers to `runs/train`, with a new experiment directory created for each new training as `runs/train/exp2`, `runs/train/exp3`, etc.\n",
504
+ "\n",
505
+ "This directory contains train and val statistics, mosaics, labels, predictions and augmentated mosaics, as well as metrics and charts including precision-recall (PR) curves and confusion matrices. \n",
506
+ "\n",
507
+ "<img alt=\"Local logging results\" src=\"https://user-images.githubusercontent.com/26833433/183222430-e1abd1b7-782c-4cde-b04d-ad52926bf818.jpg\" width=\"1280\"/>\n"
508
+ ]
509
+ },
510
+ {
511
+ "cell_type": "markdown",
512
+ "metadata": {
513
+ "id": "Zelyeqbyt3GD"
514
+ },
515
+ "source": [
516
+ "# Environments\n",
517
+ "\n",
518
+ "YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including [CUDA](https://developer.nvidia.com/cuda)/[CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/) and [PyTorch](https://pytorch.org/) preinstalled):\n",
519
+ "\n",
520
+ "- **Notebooks** with free GPU: <a href=\"https://bit.ly/yolov5-paperspace-notebook\"><img src=\"https://assets.paperspace.io/img/gradient-badge.svg\" alt=\"Run on Gradient\"></a> <a href=\"https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"></a> <a href=\"https://www.kaggle.com/ultralytics/yolov5\"><img src=\"https://kaggle.com/static/images/open-in-kaggle.svg\" alt=\"Open In Kaggle\"></a>\n",
521
+ "- **Google Cloud** Deep Learning VM. See [GCP Quickstart Guide](https://docs.ultralytics.com/yolov5/environments/google_cloud_quickstart_tutorial/)\n",
522
+ "- **Amazon** Deep Learning AMI. See [AWS Quickstart Guide](https://docs.ultralytics.com/yolov5/environments/aws_quickstart_tutorial/)\n",
523
+ "- **Docker Image**. See [Docker Quickstart Guide](https://docs.ultralytics.com/yolov5/environments/docker_image_quickstart_tutorial/) <a href=\"https://hub.docker.com/r/ultralytics/yolov5\"><img src=\"https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker\" alt=\"Docker Pulls\"></a>\n"
524
+ ]
525
+ },
526
+ {
527
+ "cell_type": "markdown",
528
+ "metadata": {
529
+ "id": "6Qu7Iesl0p54"
530
+ },
531
+ "source": [
532
+ "# Status\n",
533
+ "\n",
534
+ "![YOLOv5 CI](https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml/badge.svg)\n",
535
+ "\n",
536
+ "If this badge is green, all [YOLOv5 GitHub Actions](https://github.com/ultralytics/yolov5/actions) Continuous Integration (CI) tests are currently passing. CI tests verify correct operation of YOLOv5 training ([train.py](https://github.com/ultralytics/yolov5/blob/master/train.py)), testing ([val.py](https://github.com/ultralytics/yolov5/blob/master/val.py)), inference ([detect.py](https://github.com/ultralytics/yolov5/blob/master/detect.py)) and export ([export.py](https://github.com/ultralytics/yolov5/blob/master/export.py)) on macOS, Windows, and Ubuntu every 24 hours and on every commit.\n"
537
+ ]
538
+ },
539
+ {
540
+ "cell_type": "markdown",
541
+ "metadata": {
542
+ "id": "IEijrePND_2I"
543
+ },
544
+ "source": [
545
+ "# Appendix\n",
546
+ "\n",
547
+ "Additional content below."
548
+ ]
549
+ },
550
+ {
551
+ "cell_type": "code",
552
+ "execution_count": null,
553
+ "metadata": {
554
+ "id": "GMusP4OAxFu6"
555
+ },
556
+ "outputs": [],
557
+ "source": [
558
+ "# YOLOv5 PyTorch HUB Inference (DetectionModels only)\n",
559
+ "import torch\n",
560
+ "\n",
561
+ "model = torch.hub.load('ultralytics/yolov5', 'yolov5s-seg') # yolov5n - yolov5x6 or custom\n",
562
+ "im = 'https://ultralytics.com/images/zidane.jpg' # file, Path, PIL.Image, OpenCV, nparray, list\n",
563
+ "results = model(im) # inference\n",
564
+ "results.print() # or .show(), .save(), .crop(), .pandas(), etc."
565
+ ]
566
+ }
567
+ ],
568
+ "metadata": {
569
+ "accelerator": "GPU",
570
+ "colab": {
571
+ "name": "YOLOv5 Segmentation Tutorial",
572
+ "provenance": [],
573
+ "toc_visible": true
574
+ },
575
+ "kernelspec": {
576
+ "display_name": "Python 3 (ipykernel)",
577
+ "language": "python",
578
+ "name": "python3"
579
+ },
580
+ "language_info": {
581
+ "codemirror_mode": {
582
+ "name": "ipython",
583
+ "version": 3
584
+ },
585
+ "file_extension": ".py",
586
+ "mimetype": "text/x-python",
587
+ "name": "python",
588
+ "nbconvert_exporter": "python",
589
+ "pygments_lexer": "ipython3",
590
+ "version": "3.7.12"
591
+ }
592
+ },
593
+ "nbformat": 4,
594
+ "nbformat_minor": 0
595
+ }
TextDetection/segment/val.py ADDED
@@ -0,0 +1,473 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 πŸš€ by Ultralytics, AGPL-3.0 license
2
+ """
3
+ Validate a trained YOLOv5 segment model on a segment dataset
4
+
5
+ Usage:
6
+ $ bash data/scripts/get_coco.sh --val --segments # download COCO-segments val split (1G, 5000 images)
7
+ $ python segment/val.py --weights yolov5s-seg.pt --data coco.yaml --img 640 # validate COCO-segments
8
+
9
+ Usage - formats:
10
+ $ python segment/val.py --weights yolov5s-seg.pt # PyTorch
11
+ yolov5s-seg.torchscript # TorchScript
12
+ yolov5s-seg.onnx # ONNX Runtime or OpenCV DNN with --dnn
13
+ yolov5s-seg_openvino_label # OpenVINO
14
+ yolov5s-seg.engine # TensorRT
15
+ yolov5s-seg.mlmodel # CoreML (macOS-only)
16
+ yolov5s-seg_saved_model # TensorFlow SavedModel
17
+ yolov5s-seg.pb # TensorFlow GraphDef
18
+ yolov5s-seg.tflite # TensorFlow Lite
19
+ yolov5s-seg_edgetpu.tflite # TensorFlow Edge TPU
20
+ yolov5s-seg_paddle_model # PaddlePaddle
21
+ """
22
+
23
+ import argparse
24
+ import json
25
+ import os
26
+ import subprocess
27
+ import sys
28
+ from multiprocessing.pool import ThreadPool
29
+ from pathlib import Path
30
+
31
+ import numpy as np
32
+ import torch
33
+ from tqdm import tqdm
34
+
35
+ FILE = Path(__file__).resolve()
36
+ ROOT = FILE.parents[1] # YOLOv5 root directory
37
+ if str(ROOT) not in sys.path:
38
+ sys.path.append(str(ROOT)) # add ROOT to PATH
39
+ ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
40
+
41
+ import torch.nn.functional as F
42
+
43
+ from models.common import DetectMultiBackend
44
+ from models.yolo import SegmentationModel
45
+ from utils.callbacks import Callbacks
46
+ from utils.general import (LOGGER, NUM_THREADS, TQDM_BAR_FORMAT, Profile, check_dataset, check_img_size,
47
+ check_requirements, check_yaml, coco80_to_coco91_class, colorstr, increment_path,
48
+ non_max_suppression, print_args, scale_boxes, xywh2xyxy, xyxy2xywh)
49
+ from utils.metrics import ConfusionMatrix, box_iou
50
+ from utils.plots import output_to_target, plot_val_study
51
+ from utils.segment.dataloaders import create_dataloader
52
+ from utils.segment.general import mask_iou, process_mask, process_mask_native, scale_image
53
+ from utils.segment.metrics import Metrics, ap_per_class_box_and_mask
54
+ from utils.segment.plots import plot_images_and_masks
55
+ from utils.torch_utils import de_parallel, select_device, smart_inference_mode
56
+
57
+
58
+ def save_one_txt(predn, save_conf, shape, file):
59
+ # Save one txt result
60
+ gn = torch.tensor(shape)[[1, 0, 1, 0]] # normalization gain whwh
61
+ for *xyxy, conf, cls in predn.tolist():
62
+ xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
63
+ line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
64
+ with open(file, 'a') as f:
65
+ f.write(('%g ' * len(line)).rstrip() % line + '\n')
66
+
67
+
68
+ def save_one_json(predn, jdict, path, class_map, pred_masks):
69
+ # Save one JSON result {"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}
70
+ from pycocotools.mask import encode
71
+
72
+ def single_encode(x):
73
+ rle = encode(np.asarray(x[:, :, None], order='F', dtype='uint8'))[0]
74
+ rle['counts'] = rle['counts'].decode('utf-8')
75
+ return rle
76
+
77
+ image_id = int(path.stem) if path.stem.isnumeric() else path.stem
78
+ box = xyxy2xywh(predn[:, :4]) # xywh
79
+ box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
80
+ pred_masks = np.transpose(pred_masks, (2, 0, 1))
81
+ with ThreadPool(NUM_THREADS) as pool:
82
+ rles = pool.map(single_encode, pred_masks)
83
+ for i, (p, b) in enumerate(zip(predn.tolist(), box.tolist())):
84
+ jdict.append({
85
+ 'image_id': image_id,
86
+ 'category_id': class_map[int(p[5])],
87
+ 'bbox': [round(x, 3) for x in b],
88
+ 'score': round(p[4], 5),
89
+ 'segmentation': rles[i]})
90
+
91
+
92
+ def process_batch(detections, labels, iouv, pred_masks=None, gt_masks=None, overlap=False, masks=False):
93
+ """
94
+ Return correct prediction matrix
95
+ Arguments:
96
+ detections (array[N, 6]), x1, y1, x2, y2, conf, class
97
+ labels (array[M, 5]), class, x1, y1, x2, y2
98
+ Returns:
99
+ correct (array[N, 10]), for 10 IoU levels
100
+ """
101
+ if masks:
102
+ if overlap:
103
+ nl = len(labels)
104
+ index = torch.arange(nl, device=gt_masks.device).view(nl, 1, 1) + 1
105
+ gt_masks = gt_masks.repeat(nl, 1, 1) # shape(1,640,640) -> (n,640,640)
106
+ gt_masks = torch.where(gt_masks == index, 1.0, 0.0)
107
+ if gt_masks.shape[1:] != pred_masks.shape[1:]:
108
+ gt_masks = F.interpolate(gt_masks[None], pred_masks.shape[1:], mode='bilinear', align_corners=False)[0]
109
+ gt_masks = gt_masks.gt_(0.5)
110
+ iou = mask_iou(gt_masks.view(gt_masks.shape[0], -1), pred_masks.view(pred_masks.shape[0], -1))
111
+ else: # boxes
112
+ iou = box_iou(labels[:, 1:], detections[:, :4])
113
+
114
+ correct = np.zeros((detections.shape[0], iouv.shape[0])).astype(bool)
115
+ correct_class = labels[:, 0:1] == detections[:, 5]
116
+ for i in range(len(iouv)):
117
+ x = torch.where((iou >= iouv[i]) & correct_class) # IoU > threshold and classes match
118
+ if x[0].shape[0]:
119
+ matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy() # [label, detect, iou]
120
+ if x[0].shape[0] > 1:
121
+ matches = matches[matches[:, 2].argsort()[::-1]]
122
+ matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
123
+ # matches = matches[matches[:, 2].argsort()[::-1]]
124
+ matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
125
+ correct[matches[:, 1].astype(int), i] = True
126
+ return torch.tensor(correct, dtype=torch.bool, device=iouv.device)
127
+
128
+
129
+ @smart_inference_mode()
130
+ def run(
131
+ data,
132
+ weights=None, # model.pt path(s)
133
+ batch_size=32, # batch size
134
+ imgsz=640, # inference size (pixels)
135
+ conf_thres=0.001, # confidence threshold
136
+ iou_thres=0.6, # NMS IoU threshold
137
+ max_det=300, # maximum detections per image
138
+ task='val', # train, val, test, speed or study
139
+ device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
140
+ workers=8, # max dataloader workers (per RANK in DDP mode)
141
+ single_cls=False, # treat as single-class dataset
142
+ augment=False, # augmented inference
143
+ verbose=False, # verbose output
144
+ save_txt=False, # save results to *.txt
145
+ save_hybrid=False, # save label+prediction hybrid results to *.txt
146
+ save_conf=False, # save confidences in --save-txt labels
147
+ save_json=False, # save a COCO-JSON results file
148
+ project=ROOT / 'runs/val-seg', # save to project/name
149
+ name='exp', # save to project/name
150
+ exist_ok=False, # existing project/name ok, do not increment
151
+ half=True, # use FP16 half-precision inference
152
+ dnn=False, # use OpenCV DNN for ONNX inference
153
+ model=None,
154
+ dataloader=None,
155
+ save_dir=Path(''),
156
+ plots=True,
157
+ overlap=False,
158
+ mask_downsample_ratio=1,
159
+ compute_loss=None,
160
+ callbacks=Callbacks(),
161
+ ):
162
+ if save_json:
163
+ check_requirements('pycocotools>=2.0.6')
164
+ process = process_mask_native # more accurate
165
+ else:
166
+ process = process_mask # faster
167
+
168
+ # Initialize/load model and set device
169
+ training = model is not None
170
+ if training: # called by train.py
171
+ device, pt, jit, engine = next(model.parameters()).device, True, False, False # get model device, PyTorch model
172
+ half &= device.type != 'cpu' # half precision only supported on CUDA
173
+ model.half() if half else model.float()
174
+ nm = de_parallel(model).model[-1].nm # number of masks
175
+ else: # called directly
176
+ device = select_device(device, batch_size=batch_size)
177
+
178
+ # Directories
179
+ save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
180
+ (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
181
+
182
+ # Load model
183
+ model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
184
+ stride, pt, jit, engine = model.stride, model.pt, model.jit, model.engine
185
+ imgsz = check_img_size(imgsz, s=stride) # check image size
186
+ half = model.fp16 # FP16 supported on limited backends with CUDA
187
+ nm = de_parallel(model).model.model[-1].nm if isinstance(model, SegmentationModel) else 32 # number of masks
188
+ if engine:
189
+ batch_size = model.batch_size
190
+ else:
191
+ device = model.device
192
+ if not (pt or jit):
193
+ batch_size = 1 # export.py models default to batch-size 1
194
+ LOGGER.info(f'Forcing --batch-size 1 square inference (1,3,{imgsz},{imgsz}) for non-PyTorch models')
195
+
196
+ # Data
197
+ data = check_dataset(data) # check
198
+
199
+ # Configure
200
+ model.eval()
201
+ cuda = device.type != 'cpu'
202
+ is_coco = isinstance(data.get('val'), str) and data['val'].endswith(f'coco{os.sep}val2017.txt') # COCO dataset
203
+ nc = 1 if single_cls else int(data['nc']) # number of classes
204
+ iouv = torch.linspace(0.5, 0.95, 10, device=device) # iou vector for [email protected]:0.95
205
+ niou = iouv.numel()
206
+
207
+ # Dataloader
208
+ if not training:
209
+ if pt and not single_cls: # check --weights are trained on --data
210
+ ncm = model.model.nc
211
+ assert ncm == nc, f'{weights} ({ncm} classes) trained on different --data than what you passed ({nc} ' \
212
+ f'classes). Pass correct combination of --weights and --data that are trained together.'
213
+ model.warmup(imgsz=(1 if pt else batch_size, 3, imgsz, imgsz)) # warmup
214
+ pad, rect = (0.0, False) if task == 'speed' else (0.5, pt) # square inference for benchmarks
215
+ task = task if task in ('train', 'val', 'test') else 'val' # path to train/val/test images
216
+ dataloader = create_dataloader(data[task],
217
+ imgsz,
218
+ batch_size,
219
+ stride,
220
+ single_cls,
221
+ pad=pad,
222
+ rect=rect,
223
+ workers=workers,
224
+ prefix=colorstr(f'{task}: '),
225
+ overlap_mask=overlap,
226
+ mask_downsample_ratio=mask_downsample_ratio)[0]
227
+
228
+ seen = 0
229
+ confusion_matrix = ConfusionMatrix(nc=nc)
230
+ names = model.names if hasattr(model, 'names') else model.module.names # get class names
231
+ if isinstance(names, (list, tuple)): # old format
232
+ names = dict(enumerate(names))
233
+ class_map = coco80_to_coco91_class() if is_coco else list(range(1000))
234
+ s = ('%22s' + '%11s' * 10) % ('Class', 'Images', 'Instances', 'Box(P', 'R', 'mAP50', 'mAP50-95)', 'Mask(P', 'R',
235
+ 'mAP50', 'mAP50-95)')
236
+ dt = Profile(), Profile(), Profile()
237
+ metrics = Metrics()
238
+ loss = torch.zeros(4, device=device)
239
+ jdict, stats = [], []
240
+ # callbacks.run('on_val_start')
241
+ pbar = tqdm(dataloader, desc=s, bar_format=TQDM_BAR_FORMAT) # progress bar
242
+ for batch_i, (im, targets, paths, shapes, masks) in enumerate(pbar):
243
+ # callbacks.run('on_val_batch_start')
244
+ with dt[0]:
245
+ if cuda:
246
+ im = im.to(device, non_blocking=True)
247
+ targets = targets.to(device)
248
+ masks = masks.to(device)
249
+ masks = masks.float()
250
+ im = im.half() if half else im.float() # uint8 to fp16/32
251
+ im /= 255 # 0 - 255 to 0.0 - 1.0
252
+ nb, _, height, width = im.shape # batch size, channels, height, width
253
+
254
+ # Inference
255
+ with dt[1]:
256
+ preds, protos, train_out = model(im) if compute_loss else (*model(im, augment=augment)[:2], None)
257
+
258
+ # Loss
259
+ if compute_loss:
260
+ loss += compute_loss((train_out, protos), targets, masks)[1] # box, obj, cls
261
+
262
+ # NMS
263
+ targets[:, 2:] *= torch.tensor((width, height, width, height), device=device) # to pixels
264
+ lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else [] # for autolabelling
265
+ with dt[2]:
266
+ preds = non_max_suppression(preds,
267
+ conf_thres,
268
+ iou_thres,
269
+ labels=lb,
270
+ multi_label=True,
271
+ agnostic=single_cls,
272
+ max_det=max_det,
273
+ nm=nm)
274
+
275
+ # Metrics
276
+ plot_masks = [] # masks for plotting
277
+ for si, (pred, proto) in enumerate(zip(preds, protos)):
278
+ labels = targets[targets[:, 0] == si, 1:]
279
+ nl, npr = labels.shape[0], pred.shape[0] # number of labels, predictions
280
+ path, shape = Path(paths[si]), shapes[si][0]
281
+ correct_masks = torch.zeros(npr, niou, dtype=torch.bool, device=device) # init
282
+ correct_bboxes = torch.zeros(npr, niou, dtype=torch.bool, device=device) # init
283
+ seen += 1
284
+
285
+ if npr == 0:
286
+ if nl:
287
+ stats.append((correct_masks, correct_bboxes, *torch.zeros((2, 0), device=device), labels[:, 0]))
288
+ if plots:
289
+ confusion_matrix.process_batch(detections=None, labels=labels[:, 0])
290
+ continue
291
+
292
+ # Masks
293
+ midx = [si] if overlap else targets[:, 0] == si
294
+ gt_masks = masks[midx]
295
+ pred_masks = process(proto, pred[:, 6:], pred[:, :4], shape=im[si].shape[1:])
296
+
297
+ # Predictions
298
+ if single_cls:
299
+ pred[:, 5] = 0
300
+ predn = pred.clone()
301
+ scale_boxes(im[si].shape[1:], predn[:, :4], shape, shapes[si][1]) # native-space pred
302
+
303
+ # Evaluate
304
+ if nl:
305
+ tbox = xywh2xyxy(labels[:, 1:5]) # target boxes
306
+ scale_boxes(im[si].shape[1:], tbox, shape, shapes[si][1]) # native-space labels
307
+ labelsn = torch.cat((labels[:, 0:1], tbox), 1) # native-space labels
308
+ correct_bboxes = process_batch(predn, labelsn, iouv)
309
+ correct_masks = process_batch(predn, labelsn, iouv, pred_masks, gt_masks, overlap=overlap, masks=True)
310
+ if plots:
311
+ confusion_matrix.process_batch(predn, labelsn)
312
+ stats.append((correct_masks, correct_bboxes, pred[:, 4], pred[:, 5], labels[:, 0])) # (conf, pcls, tcls)
313
+
314
+ pred_masks = torch.as_tensor(pred_masks, dtype=torch.uint8)
315
+ if plots and batch_i < 3:
316
+ plot_masks.append(pred_masks[:15]) # filter top 15 to plot
317
+
318
+ # Save/log
319
+ if save_txt:
320
+ save_one_txt(predn, save_conf, shape, file=save_dir / 'labels' / f'{path.stem}.txt')
321
+ if save_json:
322
+ pred_masks = scale_image(im[si].shape[1:],
323
+ pred_masks.permute(1, 2, 0).contiguous().cpu().numpy(), shape, shapes[si][1])
324
+ save_one_json(predn, jdict, path, class_map, pred_masks) # append to COCO-JSON dictionary
325
+ # callbacks.run('on_val_image_end', pred, predn, path, names, im[si])
326
+
327
+ # Plot images
328
+ if plots and batch_i < 3:
329
+ if len(plot_masks):
330
+ plot_masks = torch.cat(plot_masks, dim=0)
331
+ plot_images_and_masks(im, targets, masks, paths, save_dir / f'val_batch{batch_i}_labels.jpg', names)
332
+ plot_images_and_masks(im, output_to_target(preds, max_det=15), plot_masks, paths,
333
+ save_dir / f'val_batch{batch_i}_pred.jpg', names) # pred
334
+
335
+ # callbacks.run('on_val_batch_end')
336
+
337
+ # Compute metrics
338
+ stats = [torch.cat(x, 0).cpu().numpy() for x in zip(*stats)] # to numpy
339
+ if len(stats) and stats[0].any():
340
+ results = ap_per_class_box_and_mask(*stats, plot=plots, save_dir=save_dir, names=names)
341
+ metrics.update(results)
342
+ nt = np.bincount(stats[4].astype(int), minlength=nc) # number of targets per class
343
+
344
+ # Print results
345
+ pf = '%22s' + '%11i' * 2 + '%11.3g' * 8 # print format
346
+ LOGGER.info(pf % ('all', seen, nt.sum(), *metrics.mean_results()))
347
+ if nt.sum() == 0:
348
+ LOGGER.warning(f'WARNING ⚠️ no labels found in {task} set, can not compute metrics without labels')
349
+
350
+ # Print results per class
351
+ if (verbose or (nc < 50 and not training)) and nc > 1 and len(stats):
352
+ for i, c in enumerate(metrics.ap_class_index):
353
+ LOGGER.info(pf % (names[c], seen, nt[c], *metrics.class_result(i)))
354
+
355
+ # Print speeds
356
+ t = tuple(x.t / seen * 1E3 for x in dt) # speeds per image
357
+ if not training:
358
+ shape = (batch_size, 3, imgsz, imgsz)
359
+ LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {shape}' % t)
360
+
361
+ # Plots
362
+ if plots:
363
+ confusion_matrix.plot(save_dir=save_dir, names=list(names.values()))
364
+ # callbacks.run('on_val_end')
365
+
366
+ mp_bbox, mr_bbox, map50_bbox, map_bbox, mp_mask, mr_mask, map50_mask, map_mask = metrics.mean_results()
367
+
368
+ # Save JSON
369
+ if save_json and len(jdict):
370
+ w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else '' # weights
371
+ anno_json = str(Path('../datasets/coco/annotations/instances_val2017.json')) # annotations
372
+ pred_json = str(save_dir / f'{w}_predictions.json') # predictions
373
+ LOGGER.info(f'\nEvaluating pycocotools mAP... saving {pred_json}...')
374
+ with open(pred_json, 'w') as f:
375
+ json.dump(jdict, f)
376
+
377
+ try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
378
+ from pycocotools.coco import COCO
379
+ from pycocotools.cocoeval import COCOeval
380
+
381
+ anno = COCO(anno_json) # init annotations api
382
+ pred = anno.loadRes(pred_json) # init predictions api
383
+ results = []
384
+ for eval in COCOeval(anno, pred, 'bbox'), COCOeval(anno, pred, 'segm'):
385
+ if is_coco:
386
+ eval.params.imgIds = [int(Path(x).stem) for x in dataloader.dataset.im_files] # img ID to evaluate
387
+ eval.evaluate()
388
+ eval.accumulate()
389
+ eval.summarize()
390
+ results.extend(eval.stats[:2]) # update results ([email protected]:0.95, [email protected])
391
+ map_bbox, map50_bbox, map_mask, map50_mask = results
392
+ except Exception as e:
393
+ LOGGER.info(f'pycocotools unable to run: {e}')
394
+
395
+ # Return results
396
+ model.float() # for training
397
+ if not training:
398
+ s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
399
+ LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
400
+ final_metric = mp_bbox, mr_bbox, map50_bbox, map_bbox, mp_mask, mr_mask, map50_mask, map_mask
401
+ return (*final_metric, *(loss.cpu() / len(dataloader)).tolist()), metrics.get_maps(nc), t
402
+
403
+
404
+ def parse_opt():
405
+ parser = argparse.ArgumentParser()
406
+ parser.add_argument('--data', type=str, default=ROOT / 'data/coco128-seg.yaml', help='dataset.yaml path')
407
+ parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s-seg.pt', help='model path(s)')
408
+ parser.add_argument('--batch-size', type=int, default=32, help='batch size')
409
+ parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='inference size (pixels)')
410
+ parser.add_argument('--conf-thres', type=float, default=0.001, help='confidence threshold')
411
+ parser.add_argument('--iou-thres', type=float, default=0.6, help='NMS IoU threshold')
412
+ parser.add_argument('--max-det', type=int, default=300, help='maximum detections per image')
413
+ parser.add_argument('--task', default='val', help='train, val, test, speed or study')
414
+ parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
415
+ parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)')
416
+ parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset')
417
+ parser.add_argument('--augment', action='store_true', help='augmented inference')
418
+ parser.add_argument('--verbose', action='store_true', help='report mAP by class')
419
+ parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
420
+ parser.add_argument('--save-hybrid', action='store_true', help='save label+prediction hybrid results to *.txt')
421
+ parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
422
+ parser.add_argument('--save-json', action='store_true', help='save a COCO-JSON results file')
423
+ parser.add_argument('--project', default=ROOT / 'runs/val-seg', help='save results to project/name')
424
+ parser.add_argument('--name', default='exp', help='save to project/name')
425
+ parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
426
+ parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
427
+ parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
428
+ opt = parser.parse_args()
429
+ opt.data = check_yaml(opt.data) # check YAML
430
+ # opt.save_json |= opt.data.endswith('coco.yaml')
431
+ opt.save_txt |= opt.save_hybrid
432
+ print_args(vars(opt))
433
+ return opt
434
+
435
+
436
+ def main(opt):
437
+ check_requirements(ROOT / 'requirements.txt', exclude=('tensorboard', 'thop'))
438
+
439
+ if opt.task in ('train', 'val', 'test'): # run normally
440
+ if opt.conf_thres > 0.001: # https://github.com/ultralytics/yolov5/issues/1466
441
+ LOGGER.warning(f'WARNING ⚠️ confidence threshold {opt.conf_thres} > 0.001 produces invalid results')
442
+ if opt.save_hybrid:
443
+ LOGGER.warning('WARNING ⚠️ --save-hybrid returns high mAP from hybrid labels, not from predictions alone')
444
+ run(**vars(opt))
445
+
446
+ else:
447
+ weights = opt.weights if isinstance(opt.weights, list) else [opt.weights]
448
+ opt.half = torch.cuda.is_available() and opt.device != 'cpu' # FP16 for fastest results
449
+ if opt.task == 'speed': # speed benchmarks
450
+ # python val.py --task speed --data coco.yaml --batch 1 --weights yolov5n.pt yolov5s.pt...
451
+ opt.conf_thres, opt.iou_thres, opt.save_json = 0.25, 0.45, False
452
+ for opt.weights in weights:
453
+ run(**vars(opt), plots=False)
454
+
455
+ elif opt.task == 'study': # speed vs mAP benchmarks
456
+ # python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n.pt yolov5s.pt...
457
+ for opt.weights in weights:
458
+ f = f'study_{Path(opt.data).stem}_{Path(opt.weights).stem}.txt' # filename to save to
459
+ x, y = list(range(256, 1536 + 128, 128)), [] # x axis (image sizes), y axis
460
+ for opt.imgsz in x: # img-size
461
+ LOGGER.info(f'\nRunning {f} --imgsz {opt.imgsz}...')
462
+ r, _, t = run(**vars(opt), plots=False)
463
+ y.append(r + t) # results and times
464
+ np.savetxt(f, y, fmt='%10.4g') # save
465
+ subprocess.run(['zip', '-r', 'study.zip', 'study_*.txt'])
466
+ plot_val_study(x=x) # plot
467
+ else:
468
+ raise NotImplementedError(f'--task {opt.task} not in ("train", "val", "test", "speed", "study")')
469
+
470
+
471
+ if __name__ == '__main__':
472
+ opt = parse_opt()
473
+ main(opt)
TextDetection/setup.cfg ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Project-wide configuration file, can be used for package metadata and other toll configurations
2
+ # Example usage: global configuration for PEP8 (via flake8) setting or default pytest arguments
3
+ # Local usage: pip install pre-commit, pre-commit run --all-files
4
+
5
+ [metadata]
6
+ license_files = LICENSE
7
+ description_file = README.md
8
+
9
+ [tool:pytest]
10
+ norecursedirs =
11
+ .git
12
+ dist
13
+ build
14
+ addopts =
15
+ --doctest-modules
16
+ --durations=25
17
+ --color=yes
18
+
19
+ [flake8]
20
+ max-line-length = 120
21
+ exclude = .tox,*.egg,build,temp
22
+ select = E,W,F
23
+ doctests = True
24
+ verbose = 2
25
+ # https://pep8.readthedocs.io/en/latest/intro.html#error-codes
26
+ format = pylint
27
+ # see: https://www.flake8rules.com/
28
+ ignore = E731,F405,E402,W504,E501
29
+ # E731: Do not assign a lambda expression, use a def
30
+ # F405: name may be undefined, or defined from star imports: module
31
+ # E402: module level import not at top of file
32
+ # W504: line break after binary operator
33
+ # E501: line too long
34
+ # removed:
35
+ # F401: module imported but unused
36
+ # E231: missing whitespace after β€˜,’, β€˜;’, or β€˜:’
37
+ # E127: continuation line over-indented for visual indent
38
+ # F403: β€˜from module import *’ used; unable to detect undefined names
39
+
40
+
41
+ [isort]
42
+ # https://pycqa.github.io/isort/docs/configuration/options.html
43
+ line_length = 120
44
+ # see: https://pycqa.github.io/isort/docs/configuration/multi_line_output_modes.html
45
+ multi_line_output = 0
46
+
47
+ [yapf]
48
+ based_on_style = pep8
49
+ spaces_before_comment = 2
50
+ COLUMN_LIMIT = 120
51
+ COALESCE_BRACKETS = True
52
+ SPACES_AROUND_POWER_OPERATOR = True
53
+ SPACE_BETWEEN_ENDING_COMMA_AND_CLOSING_BRACKET = True
54
+ SPLIT_BEFORE_CLOSING_BRACKET = False
55
+ SPLIT_BEFORE_FIRST_ARGUMENT = False
56
+ # EACH_DICT_ENTRY_ON_SEPARATE_LINE = False
TextDetection/utils/__init__.py ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 πŸš€ by Ultralytics, AGPL-3.0 license
2
+ """
3
+ utils/initialization
4
+ """
5
+
6
+ import contextlib
7
+ import platform
8
+ import threading
9
+
10
+
11
+ def emojis(str=''):
12
+ # Return platform-dependent emoji-safe version of string
13
+ return str.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else str
14
+
15
+
16
+ class TryExcept(contextlib.ContextDecorator):
17
+ # YOLOv5 TryExcept class. Usage: @TryExcept() decorator or 'with TryExcept():' context manager
18
+ def __init__(self, msg=''):
19
+ self.msg = msg
20
+
21
+ def __enter__(self):
22
+ pass
23
+
24
+ def __exit__(self, exc_type, value, traceback):
25
+ if value:
26
+ print(emojis(f"{self.msg}{': ' if self.msg else ''}{value}"))
27
+ return True
28
+
29
+
30
+ def threaded(func):
31
+ # Multi-threads a target function and returns thread. Usage: @threaded decorator
32
+ def wrapper(*args, **kwargs):
33
+ thread = threading.Thread(target=func, args=args, kwargs=kwargs, daemon=True)
34
+ thread.start()
35
+ return thread
36
+
37
+ return wrapper
38
+
39
+
40
+ def join_threads(verbose=False):
41
+ # Join all daemon threads, i.e. atexit.register(lambda: join_threads())
42
+ main_thread = threading.current_thread()
43
+ for t in threading.enumerate():
44
+ if t is not main_thread:
45
+ if verbose:
46
+ print(f'Joining thread {t.name}')
47
+ t.join()
48
+
49
+
50
+ def notebook_init(verbose=True):
51
+ # Check system software and hardware
52
+ print('Checking setup...')
53
+
54
+ import os
55
+ import shutil
56
+
57
+ from ultralytics.yolo.utils.checks import check_requirements
58
+
59
+ from utils.general import check_font, is_colab
60
+ from utils.torch_utils import select_device # imports
61
+
62
+ check_font()
63
+
64
+ import psutil
65
+
66
+ if check_requirements('wandb', install=False):
67
+ os.system('pip uninstall -y wandb') # eliminate unexpected account creation prompt with infinite hang
68
+ if is_colab():
69
+ shutil.rmtree('/content/sample_data', ignore_errors=True) # remove colab /sample_data directory
70
+
71
+ # System info
72
+ display = None
73
+ if verbose:
74
+ gb = 1 << 30 # bytes to GiB (1024 ** 3)
75
+ ram = psutil.virtual_memory().total
76
+ total, used, free = shutil.disk_usage('/')
77
+ with contextlib.suppress(Exception): # clear display if ipython is installed
78
+ from IPython import display
79
+ display.clear_output()
80
+ s = f'({os.cpu_count()} CPUs, {ram / gb:.1f} GB RAM, {(total - free) / gb:.1f}/{total / gb:.1f} GB disk)'
81
+ else:
82
+ s = ''
83
+
84
+ select_device(newline=False)
85
+ print(emojis(f'Setup complete βœ… {s}'))
86
+ return display
TextDetection/utils/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (2.79 kB). View file
 
TextDetection/utils/__pycache__/__init__.cpython-39.pyc ADDED
Binary file (2.73 kB). View file
 
TextDetection/utils/__pycache__/augmentations.cpython-310.pyc ADDED
Binary file (13.7 kB). View file
 
TextDetection/utils/__pycache__/augmentations.cpython-39.pyc ADDED
Binary file (13.7 kB). View file
 
TextDetection/utils/__pycache__/autoanchor.cpython-310.pyc ADDED
Binary file (6.53 kB). View file
 
TextDetection/utils/__pycache__/autoanchor.cpython-39.pyc ADDED
Binary file (6.49 kB). View file
 
TextDetection/utils/__pycache__/dataloaders.cpython-310.pyc ADDED
Binary file (43.4 kB). View file
 
TextDetection/utils/__pycache__/dataloaders.cpython-39.pyc ADDED
Binary file (43.4 kB). View file
 
TextDetection/utils/__pycache__/downloads.cpython-310.pyc ADDED
Binary file (4.3 kB). View file
 
TextDetection/utils/__pycache__/downloads.cpython-39.pyc ADDED
Binary file (4.24 kB). View file
 
TextDetection/utils/__pycache__/general.cpython-310.pyc ADDED
Binary file (37.7 kB). View file
 
TextDetection/utils/__pycache__/general.cpython-39.pyc ADDED
Binary file (37.6 kB). View file
 
TextDetection/utils/__pycache__/metrics.cpython-310.pyc ADDED
Binary file (11.4 kB). View file
 
TextDetection/utils/__pycache__/metrics.cpython-39.pyc ADDED
Binary file (11.3 kB). View file
 
TextDetection/utils/__pycache__/plots.cpython-310.pyc ADDED
Binary file (21.5 kB). View file
 
TextDetection/utils/__pycache__/plots.cpython-39.pyc ADDED
Binary file (21.5 kB). View file
 
TextDetection/utils/__pycache__/torch_utils.cpython-310.pyc ADDED
Binary file (16.8 kB). View file
 
TextDetection/utils/__pycache__/torch_utils.cpython-39.pyc ADDED
Binary file (16.8 kB). View file