File size: 8,084 Bytes
cdf55f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
import os
import gradio as gr
from huggingface_hub import Repository
from text_generation import Client
# from dialogues import DialogueTemplate
from share_btn import (community_icon_html, loading_icon_html, share_btn_css,
share_js)
HF_TOKEN = os.environ.get("HF_TOKEN", None)
API_TOKEN = os.environ.get("API_TOKEN", None)
API_URL = os.environ.get("API_URL", None)
API_URL = "https://api-inference.huggingface.co/models/timdettmers/guanaco-33b-merged"
client = Client(
API_URL,
headers={"Authorization": f"Bearer {API_TOKEN}"},
)
repo = None
def get_total_inputs(inputs, chatbot, preprompt, user_name, assistant_name, sep):
past = []
for data in chatbot:
user_data, model_data = data
if not user_data.startswith(user_name):
user_data = user_name + user_data
if not model_data.startswith(sep + assistant_name):
model_data = sep + assistant_name + model_data
past.append(user_data + model_data.rstrip() + sep)
if not inputs.startswith(user_name):
inputs = user_name + inputs
total_inputs = preprompt + "".join(past) + inputs + sep + assistant_name.rstrip()
return total_inputs
def has_no_history(chatbot, history):
return not chatbot and not history
header = "A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions."
prompt_template = "### Human: {query}\n### Assistant:{response}"
def generate(
user_message,
chatbot,
history,
temperature,
top_p,
max_new_tokens,
repetition_penalty,
):
# Don't return meaningless message when the input is empty
if not user_message:
print("Empty input")
history.append(user_message)
past_messages = []
for data in chatbot:
user_data, model_data = data
past_messages.extend(
[{"role": "user", "content": user_data}, {"role": "assistant", "content": model_data.rstrip()}]
)
if len(past_messages) < 1:
prompt = header + prompt_template.format(query=user_message, response="")
else:
prompt = header
for i in range(0, len(past_messages), 2):
intermediate_prompt = prompt_template.format(query=past_messages[i]["content"], response=past_messages[i+1]["content"])
print("intermediate: ", intermediate_prompt)
prompt = prompt + '\n' + intermediate_prompt
prompt = prompt + prompt_template.format(query=user_message, response="")
generate_kwargs = {
"temperature": temperature,
"top_p": top_p,
"max_new_tokens": max_new_tokens,
}
temperature = float(temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
truncate=999,
seed=42,
)
stream = client.generate_stream(
prompt,
**generate_kwargs,
)
output = ""
for idx, response in enumerate(stream):
if response.token.text == '':
break
if response.token.special:
continue
output += response.token.text
if idx == 0:
history.append(" " + output)
else:
history[-1] = output
chat = [(history[i].strip(), history[i + 1].strip()) for i in range(0, len(history) - 1, 2)]
yield chat, history, user_message, ""
return chat, history, user_message, ""
examples = [
"A Llama entered in my garden, what should I do?"
]
def clear_chat():
return [], []
def process_example(args):
for [x, y] in generate(args):
pass
return [x, y]
title = """<h1 align="center">Guanaco Playground 💬</h1>"""
custom_css = """
#banner-image {
display: block;
margin-left: auto;
margin-right: auto;
}
#chat-message {
font-size: 14px;
min-height: 300px;
}
"""
with gr.Blocks(analytics_enabled=False, css=custom_css) as demo:
gr.HTML(title)
with gr.Row():
with gr.Column():
gr.Markdown(
"""
💻 This demo showcases the Guanaco 33B model, released together with the paper [QLoRA](https://arxiv.org/abs/2305.14314)
"""
)
with gr.Row():
with gr.Box():
output = gr.Markdown()
chatbot = gr.Chatbot(elem_id="chat-message", label="Chat")
with gr.Row():
with gr.Column(scale=3):
user_message = gr.Textbox(placeholder="Enter your message here", show_label=False, elem_id="q-input")
with gr.Row():
send_button = gr.Button("Send", elem_id="send-btn", visible=True)
clear_chat_button = gr.Button("Clear chat", elem_id="clear-btn", visible=True)
with gr.Accordion(label="Parameters", open=False, elem_id="parameters-accordion"):
temperature = gr.Slider(
label="Temperature",
value=0.7,
minimum=0.0,
maximum=1.0,
step=0.1,
interactive=True,
info="Higher values produce more diverse outputs",
)
top_p = gr.Slider(
label="Top-p (nucleus sampling)",
value=0.9,
minimum=0.0,
maximum=1,
step=0.05,
interactive=True,
info="Higher values sample more low-probability tokens",
)
max_new_tokens = gr.Slider(
label="Max new tokens",
value=1024,
minimum=0,
maximum=2048,
step=4,
interactive=True,
info="The maximum numbers of new tokens",
)
repetition_penalty = gr.Slider(
label="Repetition Penalty",
value=1.2,
minimum=0.0,
maximum=10,
step=0.1,
interactive=True,
info="The parameter for repetition penalty. 1.0 means no penalty.",
)
with gr.Row():
gr.Examples(
examples=examples,
inputs=[user_message],
cache_examples=False,
fn=process_example,
outputs=[output],
)
with gr.Row():
gr.Markdown(
"Disclaimer: The model can produce factually incorrect output, and should not be relied on to produce "
"factually accurate information. The model was trained on various public datasets; while great efforts "
"have been taken to clean the pretraining data, it is possible that this model could generate lewd, "
"biased, or otherwise offensive outputs.",
elem_classes=["disclaimer"],
)
history = gr.State([])
last_user_message = gr.State("")
user_message.submit(
generate,
inputs=[
user_message,
chatbot,
history,
temperature,
top_p,
max_new_tokens,
repetition_penalty,
],
outputs=[chatbot, history, last_user_message, user_message],
)
send_button.click(
generate,
inputs=[
user_message,
chatbot,
history,
temperature,
top_p,
max_new_tokens,
repetition_penalty,
],
outputs=[chatbot, history, last_user_message, user_message],
)
clear_chat_button.click(clear_chat, outputs=[chatbot, history])
demo.queue(concurrency_count=16).launch(debug=True)
|