import torch import re import gradio as gr from transformers import AutoTokenizer, ViTFeatureExtractor, VisionEncoderDecoderModel, ViTImageProcessor ''' device='cpu' encoder_checkpoint = "Thibalte/captionning_project" decoder_checkpoint = "Thibalte/captionning_project" model_checkpoint = "Thibalte/captionning_project" feature_extractor= ViTImageProcessor.from_pretrained(model_path) feature_extractor = ViTFeatureExtractor.from_pretrained(encoder_checkpoint) tokenizer = AutoTokenizer.from_pretrained(decoder_checkpoint) model = VisionEncoderDecoderModel.from_pretrained(model_checkpoint).to(device) ''' # Load the trained model model_path = "Thibalte/captionning_project" # Load tokenizer tokenizer = AutoTokenizer.from_pretrained(model_path) #Load ImageProcessor feature_extractor= ViTImageProcessor.from_pretrained(model_path) # Load model model = VisionEncoderDecoderModel.from_pretrained(model_path) def predict(image,max_length=24, num_beams=4): image = image.convert('RGB') pixel_values = feature_extractor(images=image, return_tensors="pt").pixel_values sequences = model.generate(pixel_values, num_beams=4, max_length=25) captions = tokenizer.batch_decode(sequences, skip_special_tokens=True) return captions # Gradio Interface gradio_app = gr.Interface( fn=predict, inputs=gr.Image(label="Select image for captioning", sources=['upload', 'webcam'], type="pil"), outputs=[gr.Textbox(label="Image Caption")], examples = [f"example{i}.jpg" for i in range(1,7)], title="Image Captioning with our model", ) if __name__ == "__main__": gradio_app.launch()