Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -2,23 +2,45 @@ import torch
|
|
2 |
import re
|
3 |
import gradio as gr
|
4 |
from transformers import AutoTokenizer, ViTFeatureExtractor, VisionEncoderDecoderModel
|
5 |
-
|
6 |
device='cpu'
|
7 |
encoder_checkpoint = "Thibalte/captionning_project"
|
8 |
decoder_checkpoint = "Thibalte/captionning_project"
|
9 |
model_checkpoint = "Thibalte/captionning_project"
|
|
|
10 |
feature_extractor = ViTFeatureExtractor.from_pretrained(encoder_checkpoint)
|
11 |
tokenizer = AutoTokenizer.from_pretrained(decoder_checkpoint)
|
12 |
model = VisionEncoderDecoderModel.from_pretrained(model_checkpoint).to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
|
15 |
def predict(image,max_length=24, num_beams=4):
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
return caption_text
|
22 |
|
23 |
|
24 |
# Gradio Interface
|
|
|
2 |
import re
|
3 |
import gradio as gr
|
4 |
from transformers import AutoTokenizer, ViTFeatureExtractor, VisionEncoderDecoderModel
|
5 |
+
'''
|
6 |
device='cpu'
|
7 |
encoder_checkpoint = "Thibalte/captionning_project"
|
8 |
decoder_checkpoint = "Thibalte/captionning_project"
|
9 |
model_checkpoint = "Thibalte/captionning_project"
|
10 |
+
feature_extractor= ViTImageProcessor.from_pretrained(model_path)
|
11 |
feature_extractor = ViTFeatureExtractor.from_pretrained(encoder_checkpoint)
|
12 |
tokenizer = AutoTokenizer.from_pretrained(decoder_checkpoint)
|
13 |
model = VisionEncoderDecoderModel.from_pretrained(model_checkpoint).to(device)
|
14 |
+
'''
|
15 |
+
# Load the trained model
|
16 |
+
model_path = "./image-captioning-output"
|
17 |
+
|
18 |
+
# Load tokenizer
|
19 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
20 |
+
|
21 |
+
#Load ImageProcessor
|
22 |
+
feature_extractor= ViTImageProcessor.from_pretrained(model_path)
|
23 |
+
|
24 |
+
# Load model
|
25 |
+
model = VisionEncoderDecoderModel.from_pretrained(model_path)
|
26 |
+
pixel_values = feature_extractor(images=image, return_tensors="pt").pixel_values
|
27 |
+
# use GPT2's eos_token as the pad as well as eos token
|
28 |
+
|
29 |
+
|
30 |
+
# generation
|
31 |
+
|
32 |
+
|
33 |
+
|
34 |
+
|
35 |
+
print(captions)
|
36 |
|
37 |
|
38 |
def predict(image,max_length=24, num_beams=4):
|
39 |
+
image = image.convert('RGB')
|
40 |
+
sequences = model.generate(pixel_values, num_beams=4, max_length=25)
|
41 |
+
sequences = model.generate(pixel_values, num_beams=4, max_length=25)
|
42 |
+
captions = tokenizer.batch_decode(sequences, skip_special_tokens=True)
|
43 |
+
return caption
|
|
|
44 |
|
45 |
|
46 |
# Gradio Interface
|