Nathanwit's picture
Update app.py
ffd6c60
raw
history blame
1.75 kB
import torch
import re
import gradio as gr
from transformers import AutoTokenizer, ViTFeatureExtractor, VisionEncoderDecoderModel
'''
device='cpu'
encoder_checkpoint = "Thibalte/captionning_project"
decoder_checkpoint = "Thibalte/captionning_project"
model_checkpoint = "Thibalte/captionning_project"
feature_extractor= ViTImageProcessor.from_pretrained(model_path)
feature_extractor = ViTFeatureExtractor.from_pretrained(encoder_checkpoint)
tokenizer = AutoTokenizer.from_pretrained(decoder_checkpoint)
model = VisionEncoderDecoderModel.from_pretrained(model_checkpoint).to(device)
'''
# Load the trained model
model_path = "Thibalte/captionning_project"
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_path)
#Load ImageProcessor
feature_extractor= ViTImageProcessor.from_pretrained(model_path)
# Load model
model = VisionEncoderDecoderModel.from_pretrained(model_path)
pixel_values = feature_extractor(images=image, return_tensors="pt").pixel_values
# use GPT2's eos_token as the pad as well as eos token
# generation
print(captions)
def predict(image,max_length=24, num_beams=4):
image = image.convert('RGB')
sequences = model.generate(pixel_values, num_beams=4, max_length=25)
sequences = model.generate(pixel_values, num_beams=4, max_length=25)
captions = tokenizer.batch_decode(sequences, skip_special_tokens=True)
return caption
# Gradio Interface
gradio_app = gr.Interface(
fn=predict,
inputs=gr.Image(label="Select image for captioning", sources=['upload', 'webcam'], type="pil"),
outputs=[gr.Textbox(label="Image Caption")],
examples = [f"example{i}.jpg" for i in range(1,7)],
title="Image Captioning with our model",
)
if __name__ == "__main__":
gradio_app.launch()