Spaces:
Runtime error
Runtime error
import torch | |
import re | |
import gradio as gr | |
from transformers import AutoTokenizer, ViTFeatureExtractor, VisionEncoderDecoderModel | |
device='cpu' | |
encoder_checkpoint = "nlpconnect/vit-gpt2-image-captioning" | |
decoder_checkpoint = "nlpconnect/vit-gpt2-image-captioning" | |
model_checkpoint = "nlpconnect/vit-gpt2-image-captioning" | |
feature_extractor = ViTFeatureExtractor.from_pretrained(encoder_checkpoint) | |
tokenizer = AutoTokenizer.from_pretrained(decoder_checkpoint) | |
model = VisionEncoderDecoderModel.from_pretrained(model_checkpoint).to(device) | |
def predict(image,max_length=64, num_beams=4): | |
image = image.convert('RGB') | |
image = feature_extractor(image, return_tensors="pt").pixel_values.to(device) | |
clean_text = lambda x: x.replace('<|endoftext|>','').split('\n')[0] | |
caption_ids = model.generate(image, max_length = max_length)[0] | |
caption_text = clean_text(tokenizer.decode(caption_ids)) | |
return caption_text | |
# Gradio Interface | |
gradio_app = gr.Interface( | |
fn=predict, | |
inputs=gr.Image(label="Select image for captioning", sources=['upload', 'webcam'], type="pil"), | |
outputs=[gr.Image(label="Processed Image"), gr.Textbox(label="Image Caption")], | |
examples = [f"example{i}.jpg" for i in range(1,7)], | |
title="Image Captioning with our model", | |
) | |
if __name__ == "__main__": | |
gradio_app.launch() |