from datasets import load_dataset
from datasets import Dataset
from sentence_transformers import SentenceTransformer
import faiss
import time
from datetime import datetime
import json
#import torch
import uuid
import pandas as pd
from llama_cpp import Llama
#from langchain_community.llms import LlamaCpp
from threading import Thread
from huggingface_hub import Repository, upload_file
import os
HF_TOKEN = os.getenv('HF_Token')
#Log_Path="./Logfolder"
logfile = 'DiabetesChatLog.txt'
data = load_dataset("Namitg02/Test", split='train', streaming=False)
#Returns a list of dictionaries, each representing a row in the dataset.
length = len(data)
embedding_model = SentenceTransformer("all-MiniLM-L6-v2")
embedding_dim = embedding_model.get_sentence_embedding_dimension()
# Returns dimensions of embedidng
index = faiss.IndexFlatL2(embedding_dim)
data.add_faiss_index("embeddings", custom_index=index)
# adds an index column for the embeddings
#question = "How can I reverse Diabetes?"
SYS_PROMPT = """You are an assistant for answering questions like a medical person.
You are given the extracted parts of document, a question and history of questions and answers . Provide a brief conversational answer.
If you do not know the answer, just say "I do not know." Do not make up an answer. Don't repeat the SYS_PROMPT or say that you are referring to document or an article."""
# Provides context of how to answer the question
#llm_model = "TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF", tinyllama-1.1b-chat-v1.0.Q5_K_M.gguf
# TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF , TinyLlama/TinyLlama-1.1B-Chat-v0.6, andrijdavid/TinyLlama-1.1B-Chat-v1.0-GGUF"
model = Llama(
model_path="./llama-2-7b-chat.Q4_K_M.gguf",
# chat_format="llama-2",
n_gpu_layers = 0,
temperature=0.75,
n_ctx = 4096,
top_p=0.95 #,
# eos_tokens=terminators
# callback_manager=callback_manager,
# verbose=True, # Verbose is required to pass to the callback manager
)
#initiate model and tokenizer
def search(query: str, k: int = 2 ):
"""a function that embeds a new query and returns the most probable results"""
embedded_query = embedding_model.encode(query) # create embedding of a new query
scores, retrieved_examples = data.get_nearest_examples( # retrieve results
"embeddings", embedded_query, # compare our new embedded query with the dataset embeddings
k=k # get only top k results
)
return scores, retrieved_examples
# returns scores (List[float]): the retrieval scores from either FAISS (IndexFlatL2 by default) and examples (dict) format
# called by talk function that passes prompt
def format_prompt(prompt,retrieved_documents,k,history,memory_limit=3):
"""using the retrieved documents we will prompt the model to generate our responses"""
PROMPT = f"Question:{prompt}\nContext:"
for idx in range(k) :
PROMPT+= f"{retrieved_documents['0'][idx]}\n"
print("historyinfo")
print(f"{history}")
if len(history) == 0:
return PROMPT
if len(history) > memory_limit:
history = history[-memory_limit:]
print("checkwohist")
# PROMPT = PROMPT + f"{history[0][0]} [/INST] {history[0][1]} "
# Handle conversation history
for user_message, bot_message in history[0:]:
PROMPT += f"[INST] {user_message} [/INST] {bot_message} "
print("checkwthhist2")
return PROMPT
# Called by talk function to add retrieved documents to the prompt. Keeps adding text of retrieved documents to string that are retreived
def talk(prompt, history):
k = 2 # number of retrieved documents
scores , retrieved_documents = search(prompt, k) # get retrival scores and examples in dictionary format based on the prompt passed
print(retrieved_documents.keys())
# print("check4")
formatted_prompt = format_prompt(prompt,retrieved_documents,k,history,memory_limit=3) # create a new prompt using the retrieved documents
print("check5")
pd.options.display.max_colwidth = 4000
messages = [{"role":"system","content":SYS_PROMPT},{"role":"user","content":formatted_prompt}]
print(messages)
# binding the system context and new prompt for LLM
# the chat template structure should be based on text generation model format
# indicates the end of a sequence
stream = model.create_chat_completion(messages = messages,max_tokens =400, stop=[""], stream=False)
# print(f"{stream}")
print("check 7")
print(stream['choices'][0]['message']['content'])
response = stream['choices'][0]['message']['content']
# for user_message, bot_message in history[0:]:
# historylog += f"[INST] {user_message} [/INST] {bot_message} "
historylog = ''
historylog += f"{prompt} \n {response} "
print("history log")
print(str(historylog))
print("history log string printed")
try:
# write data to file
unique_filename = f"file_{uuid.uuid4()}.txt"
# timestamp = datetime.now().strftime('%Y-%m-%d_%H-%M-%S')
# filename = f"file_{timestamp}.txt"
with open(unique_filename, "a") as data:
data.write(historylog)
print("History log printed:")
with open(unique_filename, "r") as data:
print(data.read())
# with open("./file.txt", "a") as data:
# data.write(historylog)
# Read the contents of the file to display it.
# print("History log printed:")
# with open("./file.txt", "r") as data:
# print(data.read())
except IOError as e:
print(f"An error occurred: {e}")
# from huggingface_hub import HfApi
# api = HfApi()
# api.upload_file(
# path_or_fileobj="./file.txt",
# path_in_repo="file.txt",
# repo_id="Namitg02/Test",
# repo_type="space"
# )
print("upload section passed")
for i in range(len(response)):
time.sleep(0.05)
yield response[: i+1]
# calling the model to generate response based on message/ input
# do_sample if set to True uses strategies to select the next token from the probability distribution over the entire vocabulary
# temperature controls randomness. more renadomness with higher temperature
# only the tokens comprising the top_p probability mass are considered for responses
# This output is a data structure containing all the information returned by generate(), but that can also be used as tuple or dictionary.
TITLE = "AI Copilot for Diabetes Patients"
DESCRIPTION = "I provide answers to concerns related to Diabetes"
import gradio as gr
# Design chatbot
demo = gr.ChatInterface(
fn=talk,
chatbot=gr.Chatbot(
show_label=True,
show_share_button=True,
show_copy_button=True,
likeable=True,
layout="bubble",
bubble_full_width=False,
),
theme="Soft",
examples=[["what is Diabetes?"]],
title=TITLE,
description=DESCRIPTION,
)
# launch chatbot and calls the talk function which in turn calls other functions
print("check14")
#memory_panda = pd.DataFrame(historylog)
#Logfile = Dataset.from_pandas(memory_panda)
#Logfile.push_to_hub("Namitg02/Logfile",token = HF_TOKEN)
demo.launch()
#demo.launch(auth=("namit", "wolfmagic"))