Create new file
Browse files
app.py
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
from transformers import AutoTokenizer
|
6 |
+
from GlobEnc.src.modeling.modeling_bert import BertForSequenceClassification
|
7 |
+
from GlobEnc.src.modeling.modeling_electra import ElectraForSequenceClassification
|
8 |
+
from GlobEnc.src.attention_rollout import AttentionRollout
|
9 |
+
|
10 |
+
import seaborn as sns
|
11 |
+
import pandas as pd
|
12 |
+
import numpy as np
|
13 |
+
import matplotlib.pyplot as plt
|
14 |
+
import matplotlib.gridspec as gridspec
|
15 |
+
import matplotlib.backends.backend_pdf
|
16 |
+
|
17 |
+
def inference(text, model):
|
18 |
+
if model == "bert-base-uncased-cls-sst2":
|
19 |
+
config = {
|
20 |
+
# As of now, BERT and ELECTRA are supported. You can choose any checkpoing of these models.
|
21 |
+
### BERT-base
|
22 |
+
"MODEL": "TehranNLP-org/bert-base-uncased-cls-sst2"
|
23 |
+
# "MODEL": "TehranNLP-org/bert-base-uncased-cls-mnli"
|
24 |
+
# "MODEL": "TehranNLP-org/bert-base-uncased-cls-hatexplain"
|
25 |
+
### BERT-large
|
26 |
+
# "MODEL": "TehranNLP-org/bert-large-sst2"
|
27 |
+
# "MODEL": "TehranNLP-org/bert-large-mnli"
|
28 |
+
# "MODEL": "TehranNLP-org/bert-large-hateXplain"
|
29 |
+
### ELECTRA
|
30 |
+
# "MODEL": "TehranNLP-org/electra-base-sst2"
|
31 |
+
# "MODEL": "TehranNLP-org/electra-base-mnli"
|
32 |
+
# "MODEL": "TehranNLP-org/electra-base-hateXplain"
|
33 |
+
}
|
34 |
+
elif model == "bert-large-sst2":
|
35 |
+
config = {
|
36 |
+
# As of now, BERT and ELECTRA are supported. You can choose any checkpoing of these models.
|
37 |
+
### BERT-base
|
38 |
+
#"MODEL": "TehranNLP-org/bert-base-uncased-cls-sst2"
|
39 |
+
# "MODEL": "TehranNLP-org/bert-base-uncased-cls-mnli"
|
40 |
+
# "MODEL": "TehranNLP-org/bert-base-uncased-cls-hatexplain"
|
41 |
+
### BERT-large
|
42 |
+
"MODEL": "TehranNLP-org/bert-large-sst2"
|
43 |
+
# "MODEL": "TehranNLP-org/bert-large-mnli"
|
44 |
+
# "MODEL": "TehranNLP-org/bert-large-hateXplain"
|
45 |
+
### ELECTRA
|
46 |
+
# "MODEL": "TehranNLP-org/electra-base-sst2"
|
47 |
+
# "MODEL": "TehranNLP-org/electra-base-mnli"
|
48 |
+
# "MODEL": "TehranNLP-org/electra-base-hateXplain"
|
49 |
+
}
|
50 |
+
else:
|
51 |
+
config = {
|
52 |
+
# As of now, BERT and ELECTRA are supported. You can choose any checkpoing of these models.
|
53 |
+
### BERT-base
|
54 |
+
#"MODEL": "TehranNLP-org/bert-base-uncased-cls-sst2"
|
55 |
+
# "MODEL": "TehranNLP-org/bert-base-uncased-cls-mnli"
|
56 |
+
# "MODEL": "TehranNLP-org/bert-base-uncased-cls-hatexplain"
|
57 |
+
### BERT-large
|
58 |
+
#"MODEL": "TehranNLP-org/bert-large-sst2"
|
59 |
+
# "MODEL": "TehranNLP-org/bert-large-mnli"
|
60 |
+
# "MODEL": "TehranNLP-org/bert-large-hateXplain"
|
61 |
+
### ELECTRA
|
62 |
+
"MODEL": "TehranNLP-org/electra-base-sst2"
|
63 |
+
# "MODEL": "TehranNLP-org/electra-base-mnli"
|
64 |
+
# "MODEL": "TehranNLP-org/electra-base-hateXplain"
|
65 |
+
}
|
66 |
+
SENTENCE = text
|
67 |
+
|
68 |
+
tokenizer = AutoTokenizer.from_pretrained(config["MODEL"])
|
69 |
+
tokenized_sentence = tokenizer.encode_plus(SENTENCE, return_tensors="pt")
|
70 |
+
if "bert" in config["MODEL"]:
|
71 |
+
model = BertForSequenceClassification.from_pretrained(config["MODEL"])
|
72 |
+
elif "electra" in config["MODEL"]:
|
73 |
+
model = ElectraForSequenceClassification.from_pretrained(config["MODEL"])
|
74 |
+
else:
|
75 |
+
raise Exception(f"Not implented model: {config['MODEL']}")
|
76 |
+
|
77 |
+
# Extract single layer attentions
|
78 |
+
with torch.no_grad():
|
79 |
+
logits, attentions, norms = model(**tokenized_sentence, output_attentions=True, output_norms=True, return_dict=False)
|
80 |
+
num_layers = len(attentions)
|
81 |
+
norm_nenc = torch.stack([norms[i][4] for i in range(num_layers)]).squeeze().cpu().numpy()
|
82 |
+
print("Single layer N-Enc token attribution:", norm_nenc.shape)
|
83 |
+
|
84 |
+
# Aggregate and compute GlobEnc
|
85 |
+
globenc = AttentionRollout().compute_flows([norm_nenc], output_hidden_states=True)[0]
|
86 |
+
globenc = np.array(globenc)
|
87 |
+
print("Aggregated N-Enc token attribution (GlobEnc):", globenc.shape)
|
88 |
+
|
89 |
+
|
90 |
+
|
91 |
+
tokenized_text = tokenizer.convert_ids_to_tokens(tokenized_sentence["input_ids"][0])
|
92 |
+
plt.figure(figsize=(14, 8))
|
93 |
+
norm_cls = globenc[:, 0, :]
|
94 |
+
norm_cls = np.flip(norm_cls, axis=0)
|
95 |
+
row_sums = norm_cls.max(axis=1)
|
96 |
+
norm_cls = norm_cls / row_sums[:, np.newaxis]
|
97 |
+
df = pd.DataFrame(norm_cls, columns=tokenized_text, index=range(len(norm_cls), 0, -1))
|
98 |
+
ax = sns.heatmap(df, cmap="Reds", square=True)
|
99 |
+
bottom, top = ax.get_ylim()
|
100 |
+
ax.set_ylim(bottom + 0.5, top - 0.5)
|
101 |
+
plt.title("GlobEnc", fontsize=16)
|
102 |
+
plt.ylabel("Layer", fontsize=16)
|
103 |
+
plt.xticks(rotation = 90, fontsize=16)
|
104 |
+
plt.yticks(fontsize=13)
|
105 |
+
plt.gcf().subplots_adjust(bottom=0.2)
|
106 |
+
print("logits:", logits)
|
107 |
+
|
108 |
+
return plt
|
109 |
+
|
110 |
+
demo = gr.Blocks()
|
111 |
+
|
112 |
+
with demo:
|
113 |
+
gr.Markdown(
|
114 |
+
"""
|
115 |
+
# Hello World!
|
116 |
+
Start typing below to see the output.
|
117 |
+
""")
|
118 |
+
inp = [gr.Textbox(),gr.Dropdown(choices=['bert-base-uncased-cls-sst2','bert-large-sst2','electra-base-sst2'])]
|
119 |
+
out = gr.Plot()
|
120 |
+
|
121 |
+
button = gr.Button(value="Run")
|
122 |
+
button.click(fn=inference,
|
123 |
+
inputs=inp,
|
124 |
+
outputs=out)
|
125 |
+
|
126 |
+
demo.launch()
|