Mykes commited on
Commit
7c2e9ad
1 Parent(s): f3c1c3d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +26 -30
app.py CHANGED
@@ -1,11 +1,14 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
9
 
10
  def respond(
11
  message,
@@ -15,49 +18,42 @@ def respond(
15
  temperature,
16
  top_p,
17
  ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
 
 
28
  response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
  max_tokens=max_tokens,
33
- stream=True,
34
  temperature=temperature,
35
  top_p=top_p,
 
36
  ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
 
42
- """
43
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
- """
45
  demo = gr.ChatInterface(
46
  respond,
47
  additional_inputs=[
48
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
  gr.Slider(
52
  minimum=0.1,
53
  maximum=1.0,
54
- value=0.95,
55
  step=0.05,
56
  label="Top-p (nucleus sampling)",
57
  ),
58
  ],
 
 
59
  )
60
 
61
-
62
  if __name__ == "__main__":
63
  demo.launch()
 
1
  import gradio as gr
2
+ from llama_cpp import Llama
3
+ from huggingface_hub import hf_hub_download
4
 
5
+ # Download the model
6
+ model_name = "Mykes/med_tinyllama_gguf"
7
+ filename = "med_tinyllama.gguf"
8
+ model_path = hf_hub_download(repo_id=model_name, filename=filename)
9
 
10
+ # Initialize the model
11
+ model = Llama(model_path=model_path, n_ctx=512, n_threads=4)
12
 
13
  def respond(
14
  message,
 
18
  temperature,
19
  top_p,
20
  ):
21
+ # Construct the prompt
22
+ prompt = f"{system_message}\n\n"
23
+ for user_msg, assistant_msg in history:
24
+ prompt += f"Human: {user_msg}\nAssistant: {assistant_msg}\n"
25
+ prompt += f"Human: {message}\nAssistant: "
 
 
 
 
26
 
27
+ # Generate response
28
  response = ""
29
+ for token in model(
30
+ prompt,
 
31
  max_tokens=max_tokens,
 
32
  temperature=temperature,
33
  top_p=top_p,
34
+ stream=True,
35
  ):
36
+ response += token['choices'][0]['text']
37
+ yield response.strip()
 
 
38
 
39
+ # Create the Gradio interface
 
 
40
  demo = gr.ChatInterface(
41
  respond,
42
  additional_inputs=[
43
+ gr.Textbox(value="You are a friendly medical assistant.", label="System message"),
44
+ gr.Slider(minimum=1, maximum=512, value=100, step=1, label="Max new tokens"),
45
+ gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature"),
46
  gr.Slider(
47
  minimum=0.1,
48
  maximum=1.0,
49
+ value=0.9,
50
  step=0.05,
51
  label="Top-p (nucleus sampling)",
52
  ),
53
  ],
54
+ title="Med TinyLlama Chat",
55
+ description="Chat with the Med TinyLlama model for medical information.",
56
  )
57
 
 
58
  if __name__ == "__main__":
59
  demo.launch()