Update app.py
Browse files
app.py
CHANGED
@@ -1,11 +1,14 @@
|
|
1 |
import gradio as gr
|
2 |
-
from
|
|
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
""
|
7 |
-
|
8 |
|
|
|
|
|
9 |
|
10 |
def respond(
|
11 |
message,
|
@@ -15,49 +18,42 @@ def respond(
|
|
15 |
temperature,
|
16 |
top_p,
|
17 |
):
|
18 |
-
|
19 |
-
|
20 |
-
for
|
21 |
-
|
22 |
-
|
23 |
-
if val[1]:
|
24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
25 |
-
|
26 |
-
messages.append({"role": "user", "content": message})
|
27 |
|
|
|
28 |
response = ""
|
29 |
-
|
30 |
-
|
31 |
-
messages,
|
32 |
max_tokens=max_tokens,
|
33 |
-
stream=True,
|
34 |
temperature=temperature,
|
35 |
top_p=top_p,
|
|
|
36 |
):
|
37 |
-
|
38 |
-
|
39 |
-
response += token
|
40 |
-
yield response
|
41 |
|
42 |
-
|
43 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
44 |
-
"""
|
45 |
demo = gr.ChatInterface(
|
46 |
respond,
|
47 |
additional_inputs=[
|
48 |
-
gr.Textbox(value="You are a friendly
|
49 |
-
gr.Slider(minimum=1, maximum=
|
50 |
-
gr.Slider(minimum=0.1, maximum=
|
51 |
gr.Slider(
|
52 |
minimum=0.1,
|
53 |
maximum=1.0,
|
54 |
-
value=0.
|
55 |
step=0.05,
|
56 |
label="Top-p (nucleus sampling)",
|
57 |
),
|
58 |
],
|
|
|
|
|
59 |
)
|
60 |
|
61 |
-
|
62 |
if __name__ == "__main__":
|
63 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from llama_cpp import Llama
|
3 |
+
from huggingface_hub import hf_hub_download
|
4 |
|
5 |
+
# Download the model
|
6 |
+
model_name = "Mykes/med_tinyllama_gguf"
|
7 |
+
filename = "med_tinyllama.gguf"
|
8 |
+
model_path = hf_hub_download(repo_id=model_name, filename=filename)
|
9 |
|
10 |
+
# Initialize the model
|
11 |
+
model = Llama(model_path=model_path, n_ctx=512, n_threads=4)
|
12 |
|
13 |
def respond(
|
14 |
message,
|
|
|
18 |
temperature,
|
19 |
top_p,
|
20 |
):
|
21 |
+
# Construct the prompt
|
22 |
+
prompt = f"{system_message}\n\n"
|
23 |
+
for user_msg, assistant_msg in history:
|
24 |
+
prompt += f"Human: {user_msg}\nAssistant: {assistant_msg}\n"
|
25 |
+
prompt += f"Human: {message}\nAssistant: "
|
|
|
|
|
|
|
|
|
26 |
|
27 |
+
# Generate response
|
28 |
response = ""
|
29 |
+
for token in model(
|
30 |
+
prompt,
|
|
|
31 |
max_tokens=max_tokens,
|
|
|
32 |
temperature=temperature,
|
33 |
top_p=top_p,
|
34 |
+
stream=True,
|
35 |
):
|
36 |
+
response += token['choices'][0]['text']
|
37 |
+
yield response.strip()
|
|
|
|
|
38 |
|
39 |
+
# Create the Gradio interface
|
|
|
|
|
40 |
demo = gr.ChatInterface(
|
41 |
respond,
|
42 |
additional_inputs=[
|
43 |
+
gr.Textbox(value="You are a friendly medical assistant.", label="System message"),
|
44 |
+
gr.Slider(minimum=1, maximum=512, value=100, step=1, label="Max new tokens"),
|
45 |
+
gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature"),
|
46 |
gr.Slider(
|
47 |
minimum=0.1,
|
48 |
maximum=1.0,
|
49 |
+
value=0.9,
|
50 |
step=0.05,
|
51 |
label="Top-p (nucleus sampling)",
|
52 |
),
|
53 |
],
|
54 |
+
title="Med TinyLlama Chat",
|
55 |
+
description="Chat with the Med TinyLlama model for medical information.",
|
56 |
)
|
57 |
|
|
|
58 |
if __name__ == "__main__":
|
59 |
demo.launch()
|