import streamlit as st from llama_cpp import Llama # llm = Llama.from_pretrained( # repo_id="Mykes/med_gemma7b_gguf", # filename="*Q4_K_M.gguf", # verbose=False, # n_ctx=512, # n_batch=512, # n_threads=4 # ) @st.cache_resource def load_model(): return Llama.from_pretrained( repo_id="Mykes/med_gemma7b_gguf", filename="*Q4_K_M.gguf", verbose=False, n_ctx=256, n_batch=256, n_threads=4 ) llm = load_model() basic_prompt = "Below is the context which is your conversation history and the last user question. Write a response according the context and question. ### Context: user: Ответь мне на вопрос о моем здоровье. assistant: Конечно! Какой у Вас вопрос? ### Question: {question} ### Response:" input_text = st.text_input('text') model_input = basic_prompt.format(question=input_text) if input_text: # Create an empty placeholder for the output output_placeholder = st.empty() # Initialize an empty string to store the generated text generated_text = "" # Stream the output for token in llm( model_input, # max_tokens=32, max_tokens=None, stop=[""], echo=True, stream=True # Enable streaming ): # Append the new token to the generated text generated_text += token['choices'][0]['text'] # Update the placeholder with the current generated text output_placeholder.write(generated_text) # After the generation is complete, you can do any final processing if needed st.write("Generation complete!")