import streamlit as st
from llama_cpp import Llama
st.set_page_config(page_title="Chat with AI", page_icon="🤖")
# Custom CSS for better styling
st.markdown("""
""", unsafe_allow_html=True)
@st.cache_resource
def load_model():
return Llama.from_pretrained(
repo_id="Mykes/med_phi3-mini-4k-GGUF",
filename="*Q4_K_M.gguf",
verbose=False,
n_ctx=256,
n_batch=256,
n_threads=4
)
llm = load_model()
basic_prompt = "Q: {question}\nA:"
# Initialize chat history
if "messages" not in st.session_state:
st.session_state.messages = []
# Display chat messages from history on app rerun
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# React to user input
if prompt := st.chat_input("What is your question?"):
# Display user message in chat message container
st.chat_message("user").markdown(prompt)
# Add user message to chat history
st.session_state.messages.append({"role": "user", "content": prompt})
model_input = basic_prompt.format(question=prompt)
# Display assistant response in chat message container
with st.chat_message("assistant"):
message_placeholder = st.empty()
full_response = ""
for token in llm(
model_input,
max_tokens=None,
stop=[""],
echo=True,
stream=True
):
full_response += token['choices'][0]['text']
message_placeholder.markdown(full_response + "▌")
message_placeholder.markdown(full_response)
# Add assistant response to chat history
st.session_state.messages.append({"role": "assistant", "content": full_response})
st.sidebar.title("Chat with AI")
st.sidebar.markdown("This is a simple chat interface using Streamlit and an AI model.")