Spaces:
Sleeping
Sleeping
import streamlit as st | |
from llama_cpp import Llama | |
# llm = Llama.from_pretrained( | |
# repo_id="Mykes/med_gemma7b_gguf", | |
# filename="*Q4_K_M.gguf", | |
# verbose=False, | |
# n_ctx=512, | |
# n_batch=512, | |
# n_threads=4 | |
# ) | |
def load_model(): | |
return Llama.from_pretrained( | |
# repo_id="Mykes/med_gemma7b_gguf", | |
# filename="*Q4_K_M.gguf", | |
repo_id="Mykes/med_phi3-mini-4k-GGUF", | |
filename="*Q4_K_M.gguf", | |
verbose=False, | |
n_ctx=256, | |
n_batch=256, | |
n_threads=4 | |
) | |
llm = load_model() | |
# basic_prompt = "Below is the context which is your conversation history and the last user question. Write a response according the context and question. ### Context: user: Ответь мне на вопрос о моем здоровье. assistant: Конечно! Какой у Вас вопрос? ### Question: {question} ### Response:" | |
basic_prompt = "Q: {question}\nA:" | |
input_text = st.text_input('text') | |
model_input = basic_prompt.format(question=input_text) | |
if input_text: | |
# Create an empty placeholder for the output | |
output_placeholder = st.empty() | |
# Initialize an empty string to store the generated text | |
generated_text = "" | |
# Stream the output | |
for token in llm( | |
model_input, | |
# max_tokens=32, | |
max_tokens=None, | |
stop=["<end_of_turn>"], | |
echo=True, | |
stream=True # Enable streaming | |
): | |
# Append the new token to the generated text | |
generated_text += token['choices'][0]['text'] | |
# Update the placeholder with the current generated text | |
output_placeholder.write(generated_text) | |
# After the generation is complete, you can do any final processing if needed | |
st.write("Generation complete!") |