Spaces:
Running
Running
import argparse | |
import cv2 | |
import numpy as np | |
import os | |
from tqdm import tqdm | |
import torch | |
from basicsr.archs.ddcolor_arch import DDColor | |
import torch.nn.functional as F | |
import gradio as gr | |
from gradio_imageslider import ImageSlider | |
import uuid | |
model_path = r"C:\Users\abohamam\Desktop\pytorch_model.pt" | |
input_size = 512 | |
model_size = 'large' | |
# Create Image Colorization Pipeline | |
class ImageColorizationPipeline(object): | |
def __init__(self, model_path, input_size=256, model_size='large'): | |
self.input_size = input_size | |
if torch.cuda.is_available(): | |
self.device = torch.device('cuda') | |
else: | |
self.device = torch.device('cpu') | |
if model_size == 'tiny': | |
self.encoder_name = 'convnext-t' | |
else: | |
self.encoder_name = 'convnext-l' | |
self.decoder_type = "MultiScaleColorDecoder" | |
if self.decoder_type == 'MultiScaleColorDecoder': | |
self.model = DDColor( | |
encoder_name=self.encoder_name, | |
decoder_name='MultiScaleColorDecoder', | |
input_size=[self.input_size, self.input_size], | |
num_output_channels=2, | |
last_norm='Spectral', | |
do_normalize=False, | |
num_queries=100, | |
num_scales=3, | |
dec_layers=9, | |
).to(self.device) | |
else: | |
self.model = DDColor( | |
encoder_name=self.encoder_name, | |
decoder_name='SingleColorDecoder', | |
input_size=[self.input_size, self.input_size], | |
num_output_channels=2, | |
last_norm='Spectral', | |
do_normalize=False, | |
num_queries=256, | |
).to(self.device) | |
self.model.load_state_dict( | |
torch.load(model_path, map_location=torch.device('cpu'))['params'], | |
strict=False) | |
self.model.eval() | |
def process(self, img): | |
self.height, self.width = img.shape[:2] | |
img = (img / 255.0).astype(np.float32) | |
orig_l = cv2.cvtColor(img, cv2.COLOR_BGR2Lab)[:, :, :1] # (h, w, 1) | |
# resize rgb image -> lab -> get grey -> rgb | |
img = cv2.resize(img, (self.input_size, self.input_size)) | |
img_l = cv2.cvtColor(img, cv2.COLOR_BGR2Lab)[:, :, :1] | |
img_gray_lab = np.concatenate((img_l, np.zeros_like(img_l), np.zeros_like(img_l)), axis=-1) | |
img_gray_rgb = cv2.cvtColor(img_gray_lab, cv2.COLOR_LAB2RGB) | |
tensor_gray_rgb = torch.from_numpy(img_gray_rgb.transpose((2, 0, 1))).float().unsqueeze(0).to(self.device) | |
output_ab = self.model(tensor_gray_rgb).cpu() # (1, 2, self.height, self.width) | |
# resize ab -> concat original l -> rgb | |
output_ab_resize = F.interpolate(output_ab, size=(self.height, self.width))[0].float().numpy().transpose(1, 2, 0) | |
output_lab = np.concatenate((orig_l, output_ab_resize), axis=-1) | |
output_bgr = cv2.cvtColor(output_lab, cv2.COLOR_LAB2BGR) | |
output_img = (output_bgr * 255.0).round().astype(np.uint8) | |
return output_img | |
def colorize_image(image): | |
"""Colorizes a grayscale image using the DDColor model.""" | |
# Convert image to grayscale if needed | |
img_array = np.array(image) | |
if len(img_array.shape) == 3 and img_array.shape[2] == 3: | |
image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) | |
# Colorize the image | |
colorized_img = colorizer.process(image) | |
# Convert colorized image to PIL format | |
colorized_img = Image.fromarray(colorized_img) | |
return colorized_img | |
# Create inference function for gradio app | |
def colorize(img): | |
image_out = colorizer.process(img) | |
# Generate a unique filename using UUID | |
unique_imgfilename = str(uuid.uuid4()) + '.png' | |
cv2.imwrite(unique_imgfilename, image_out) | |
return (img, unique_imgfilename) | |
# Gradio demo using the Image-Slider custom component | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
with gr.Column(): | |
bw_image = gr.Image(label='Black and White Input Image') | |
btn = gr.Button('Convert using DDColor') | |
with gr.Column(): | |
col_image_slider =ImageSlider(position=0.5, | |
label='Colored Image with Slider-view') | |
btn.click(colorize, bw_image, col_image_slider) | |
demo.launch() |