Spaces:
Running
Running
import streamlit as st | |
from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate | |
from llama_index.llms.huggingface import HuggingFaceInferenceAPI | |
from llama_index.embeddings.huggingface import HuggingFaceEmbedding | |
from llama_index.core import Settings | |
from youtube_transcript_api import YouTubeTranscriptApi | |
import shutil | |
import os | |
import time | |
icons = {"assistant": "robot.png", "user": "man-kddi.png"} | |
# Configure the Llama index settings | |
Settings.llm = HuggingFaceInferenceAPI( | |
model_name="mistralai/Mistral-7B-Instruct-v0.2", | |
tokenizer_name="mistralai/Mistral-7B-Instruct-v0.2", | |
context_window=3900, | |
token=os.getenv("HF_TOKEN"), | |
# max_new_tokens=1000, | |
generate_kwargs={"temperature": 0}, | |
) | |
Settings.embed_model = HuggingFaceEmbedding( | |
model_name="BAAI/bge-small-en-v1.5" | |
) | |
# Define the directory for persistent storage and data | |
PERSIST_DIR = "./db" | |
DATA_DIR = "data" | |
# Ensure data directory exists | |
os.makedirs(DATA_DIR, exist_ok=True) | |
os.makedirs(PERSIST_DIR, exist_ok=True) | |
def data_ingestion(): | |
documents = SimpleDirectoryReader(DATA_DIR).load_data() | |
storage_context = StorageContext.from_defaults() | |
index = VectorStoreIndex.from_documents(documents) | |
index.storage_context.persist(persist_dir=PERSIST_DIR) | |
def remove_old_files(): | |
directory_path = "data" | |
shutil.rmtree(directory_path) | |
os.makedirs(directory_path) | |
def extract_transcript_details(youtube_video_url): | |
try: | |
video_id=youtube_video_url.split("=")[1] | |
transcript_text=YouTubeTranscriptApi.get_transcript(video_id) | |
transcript = "" | |
for i in transcript_text: | |
transcript += " " + i["text"] | |
return transcript | |
except Exception as e: | |
st.error(e) | |
def handle_query(query): | |
storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR) | |
index = load_index_from_storage(storage_context) | |
chat_text_qa_msgs = [ | |
( | |
"user", | |
"""You are Q&A assistant named CHATTO, created by Pachaiappan [linkdin](https://www.linkedin.com/in/pachaiappan) an AI Specialist. Your main goal is to provide answers as accurately as possible, based on the instructions and context you have been given. If a question does not match the provided context or is outside the scope of the document, you only say the user to 'Please ask a questions within the context of the document'. | |
Context: | |
{context_str} | |
Question: | |
{query_str} | |
""" | |
) | |
] | |
text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs) | |
query_engine = index.as_query_engine(text_qa_template=text_qa_template) | |
answer = query_engine.query(query) | |
if hasattr(answer, 'response'): | |
return answer.response | |
elif isinstance(answer, dict) and 'response' in answer: | |
return answer['response'] | |
else: | |
return "Sorry, I couldn't find an answer." | |
def streamer(text): | |
for i in text: | |
yield i | |
time.sleep(0.001) | |
# Streamlit app initialization | |
st.title("Chat with your PDF📄") | |
st.markdown("**Built by [Pachaiappan❤️](https://mr-vicky-01.github.io/Portfolio/)**") | |
if 'messages' not in st.session_state: | |
st.session_state.messages = [{'role': 'assistant', "content": 'Hello! Upload a PDF/Youtube Video link and ask me anything about the content.'}] | |
for message in st.session_state.messages: | |
with st.chat_message(message['role'], avatar=icons[message['role']]): | |
st.write(message['content']) | |
with st.sidebar: | |
st.title("Menu:") | |
uploaded_file = st.file_uploader("Upload your PDF Files and Click on the Submit & Process Button") | |
video_url = st.text_input("Enter Youtube Video Link: ") | |
if st.button("Submit & Process"): | |
with st.spinner("Processing..."): | |
if len(os.listdir("data")) !=0: | |
remove_old_files() | |
if uploaded_file: | |
filepath = f"data/{uploaded_file.name}" | |
print(filepath) | |
with open(filepath, "wb") as f: | |
f.write(uploaded_file.getbuffer()) | |
if video_url: | |
extracted_text = extract_transcript_details(video_url) | |
with open("data/transcript_text.txt", "w") as file: | |
file.write(extracted_text) | |
data_ingestion() | |
st.success("Done") | |
user_prompt = st.chat_input("Ask me anything about the content of the PDF:") | |
if user_prompt and (uploaded_file or video_url): | |
st.session_state.messages.append({'role': 'user', "content": user_prompt}) | |
with st.chat_message("user", avatar="man-kddi.png"): | |
st.write(user_prompt) | |
# Trigger assistant's response retrieval and update UI | |
with st.spinner("Thinking..."): | |
response = handle_query(user_prompt) | |
with st.chat_message("user", avatar="robot.png"): | |
st.write_stream(streamer(response)) | |
st.session_state.messages.append({'role': 'assistant', "content": response}) |