chat-with-PDF / app.py
Mr-Vicky-01's picture
Update app.py
e7d4759 verified
raw
history blame
5.08 kB
import streamlit as st
from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate
from llama_index.llms.huggingface import HuggingFaceInferenceAPI
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.core import Settings
from youtube_transcript_api import YouTubeTranscriptApi
import shutil
import os
import time
icons = {"assistant": "robot.png", "user": "man-kddi.png"}
# Configure the Llama index settings
Settings.llm = HuggingFaceInferenceAPI(
model_name="mistralai/Mistral-7B-Instruct-v0.2",
tokenizer_name="mistralai/Mistral-7B-Instruct-v0.2",
context_window=3900,
token=os.getenv("HF_TOKEN"),
# max_new_tokens=1000,
generate_kwargs={"temperature": 0},
)
Settings.embed_model = HuggingFaceEmbedding(
model_name="BAAI/bge-small-en-v1.5"
)
# Define the directory for persistent storage and data
PERSIST_DIR = "./db"
DATA_DIR = "data"
# Ensure data directory exists
os.makedirs(DATA_DIR, exist_ok=True)
os.makedirs(PERSIST_DIR, exist_ok=True)
def data_ingestion():
documents = SimpleDirectoryReader(DATA_DIR).load_data()
storage_context = StorageContext.from_defaults()
index = VectorStoreIndex.from_documents(documents)
index.storage_context.persist(persist_dir=PERSIST_DIR)
def remove_old_files():
directory_path = "data"
shutil.rmtree(directory_path)
os.makedirs(directory_path)
def extract_transcript_details(youtube_video_url):
try:
video_id=youtube_video_url.split("=")[1]
transcript_text=YouTubeTranscriptApi.get_transcript(video_id)
transcript = ""
for i in transcript_text:
transcript += " " + i["text"]
return transcript
except Exception as e:
st.error(e)
def handle_query(query):
storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)
index = load_index_from_storage(storage_context)
chat_text_qa_msgs = [
(
"user",
"""You are Q&A assistant named CHATTO, created by Pachaiappan [linkdin](https://www.linkedin.com/in/pachaiappan) an AI Specialist. Your main goal is to provide answers as accurately as possible, based on the instructions and context you have been given. If a question does not match the provided context or is outside the scope of the document, you only say the user to 'Please ask a questions within the context of the document'.
Context:
{context_str}
Question:
{query_str}
"""
)
]
text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs)
query_engine = index.as_query_engine(text_qa_template=text_qa_template)
answer = query_engine.query(query)
if hasattr(answer, 'response'):
return answer.response
elif isinstance(answer, dict) and 'response' in answer:
return answer['response']
else:
return "Sorry, I couldn't find an answer."
def streamer(text):
for i in text:
yield i
time.sleep(0.001)
# Streamlit app initialization
st.title("Chat with your PDF📄")
st.markdown("**Built by [Pachaiappan❤️](https://mr-vicky-01.github.io/Portfolio/)**")
if 'messages' not in st.session_state:
st.session_state.messages = [{'role': 'assistant', "content": 'Hello! Upload a PDF/Youtube Video link and ask me anything about the content.'}]
for message in st.session_state.messages:
with st.chat_message(message['role'], avatar=icons[message['role']]):
st.write(message['content'])
with st.sidebar:
st.title("Menu:")
uploaded_file = st.file_uploader("Upload your PDF Files and Click on the Submit & Process Button")
video_url = st.text_input("Enter Youtube Video Link: ")
if st.button("Submit & Process"):
with st.spinner("Processing..."):
if len(os.listdir("data")) !=0:
remove_old_files()
if uploaded_file:
filepath = f"data/{uploaded_file.name}"
print(filepath)
with open(filepath, "wb") as f:
f.write(uploaded_file.getbuffer())
if video_url:
extracted_text = extract_transcript_details(video_url)
with open("data/transcript_text.txt", "w") as file:
file.write(extracted_text)
data_ingestion()
st.success("Done")
user_prompt = st.chat_input("Ask me anything about the content of the PDF:")
if user_prompt and (uploaded_file or video_url):
st.session_state.messages.append({'role': 'user', "content": user_prompt})
with st.chat_message("user", avatar="man-kddi.png"):
st.write(user_prompt)
# Trigger assistant's response retrieval and update UI
with st.spinner("Thinking..."):
response = handle_query(user_prompt)
with st.chat_message("user", avatar="robot.png"):
st.write_stream(streamer(response))
st.session_state.messages.append({'role': 'assistant', "content": response})