Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import torch | |
# Load the model and tokenizer | |
model_name = "mattshumer/Reflection-Llama-3.1-70B" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto") | |
def generate_response(message, history): | |
# Combine history and new message | |
prompt = "\n".join([f"Human: {h[0]}\nAI: {h[1]}" for h in history]) | |
prompt += f"\nHuman: {message}\nAI:" | |
# Tokenize and generate | |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device) | |
outputs = model.generate(**inputs, max_new_tokens=500, temperature=0.7) | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
# Extract only the AI's response | |
ai_response = response.split("AI:")[-1].strip() | |
return ai_response | |
# Create the Gradio interface | |
iface = gr.ChatInterface( | |
fn=generate_response, | |
title="Chat with Reflection-Llama-3.1-70B", | |
description="Ask me anything!", | |
) | |
# Launch the interface | |
iface.launch() |