import gradio as gr from PIL import Image import requests import hopsworks import joblib import pandas as pd project = hopsworks.login() fs = project.get_feature_store() mr = project.get_model_registry() model = mr.get_model("wine_model", version=1) model_dir = model.download() model = joblib.load(model_dir + "/wine_model.pkl") print("Model downloaded") def wine(type, volatile_acidity, citric_acid, chlorides, density, sulphates, alcohol): print("Calling function") df = pd.DataFrame([[type, volatile_acidity, citric_acid, chlorides, density, sulphates, alcohol]], columns=['type', 'volatile_acidity', 'citric_acid', 'chlorides', 'density', 'sulphates', 'alcohol']) print("Predicting") print(df) # 'res' is a list of predictions returned as the label. res = model.predict(df) # We add '[0]' to the result of the transformed 'res', because 'res' is a list, and we only want # the first element. print(f"Res: {res[0]}") return res[0] demo = gr.Interface( fn=wine, title="Wine Quality Predictive Analytics", description="Experiment with type (red/white), volatile acidity, citric acid, chlorides, density, sulphates, alcohol, quality to predict the wine's quality.", allow_flagging="never", inputs=[ gr.Number(value=1.0, label="wine type (red = 1, white = 0)"), gr.Number(value=1.0, label="Volatile acidity"), gr.Number(value=1.0, label="citric_acid"), gr.Number(value=1.0, label="chlorides"), gr.Number(value=1.0, label="density"), gr.Number(value=1.0, label='sulphates'), gr.Number(value=1.0, label='alcohol'), ], outputs=gr.Number(label="quality")) demo.launch(debug=True)