import gradio as gr from transformers import pipeline from huggingface_hub import login login(token="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") def generate_text( model, text, min_length, max_length, do_not_truncate, ): pipe = pipeline( 'text-generation', model='MesonWarrior/gpt2-vk-bugro', tokenizer='MesonWarrior/gpt2-vk-bugro', min_length=min_length, max_length=max_length, # do_not_truncate=do_not_truncate, use_auth_token=True ) print('generating...') output = pipe(text) print(output) return output[0]['generated_text'] def interface(): with gr.Row(): with gr.Column(): with gr.Row(): model = gr.Dropdown( ["Бугро", "Юморески", "Калик"], label="Model", value="Бугро", ) text = gr.Textbox(lines=7, label="Input text") output = gr.Textbox(lines=12, label="Output text") with gr.Row(): with gr.Column(): min_length = gr.Slider( minimum=0, maximum=128, value=32, step=1, label="Min Length", ) max_length = gr.Slider( minimum=0, maximum=512, value=96, step=1, label="Max Length", ) # do_not_truncate = gr.Checkbox( # True, # label="Do not truncate" # ) with gr.Column(): with gr.Row(): generate_btn = gr.Button( "Generate", variant="primary", label="Generate", ) generate_btn.click( fn=generate_text, inputs=[ model, text, min_length, max_length, do_not_truncate ], outputs=output, ) with gr.Blocks( title="GPT2 VK") as demo: gr.Markdown(""" ## GPT2 VK Файнтюны модели [ai-forever/rugpt3medium_based_on_gpt2](https://huggingface.co/ai-forever/rugpt3medium_based_on_gpt2) по вашим любимым пабликам ВКонтакте. """) interface() demo.queue().launch()