import gradio as gr from transformers import AutoModelForCausalLM, AutoProcessor from PIL import Image # Define constants MODEL_NAME = "microsoft/Phi-3.5-vision-instruct" DESCRIPTION = "# [Phi-3.5-vision Demo](https://huggingface.co/microsoft/Phi-3.5-vision-instruct)" DEVICE = "cuda" # Load model and processor model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, trust_remote_code=True, torch_dtype="auto", _attn_implementation="flash_attention_2").to(DEVICE).eval() processor = AutoProcessor.from_pretrained(MODEL_NAME, trust_remote_code=True) def run_example(image, text_input, model_id): # Prepare prompt and image for processing prompt = f"{text_input}\n" image = Image.fromarray(image).convert("RGB") # Process input inputs = processor(prompt, image, return_tensors="pt").to(DEVICE) generate_ids = model.generate(**inputs, max_new_tokens=1000, eos_token_id=processor.tokenizer.eos_token_id) generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:] response = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] return response css = """ #output { height: 500px; overflow: auto; border: 1px solid #ccc; } """ # Set up the Gradio interface with gr.Blocks(css=css) as demo: gr.Markdown(DESCRIPTION) with gr.Tab(label="Phi-3.5 Input"): with gr.Row(): with gr.Column(): input_img = gr.Image(label="Input Picture") text_input = gr.Textbox(label="Question") submit_btn = gr.Button(value="Submit") with gr.Column(): output_text = gr.Textbox(label="Output Text") submit_btn.click(run_example, inputs=[input_img, text_input, MODEL_NAME], outputs=output_text) demo.launch(debug=True)