Spaces:
Runtime error
Runtime error
import numpy as np | |
import gradio as gr | |
from PIL import Image | |
import torch | |
from transformers import MobileViTFeatureExtractor, MobileViTForSemanticSegmentation | |
model_checkpoint = "apple/deeplabv3-mobilevit-small" | |
feature_extractor = MobileViTFeatureExtractor.from_pretrained(model_checkpoint) | |
model = MobileViTForSemanticSegmentation.from_pretrained(model_checkpoint).eval() | |
palette = np.array( | |
[ | |
[ 0, 0, 0], [192, 0, 0], [ 0, 192, 0], [192, 192, 0], | |
[ 0, 0, 192], [192, 0, 192], [ 0, 192, 192], [192, 192, 192], | |
[128, 0, 0], [255, 0, 0], [128, 192, 0], [255, 192, 0], | |
[128, 0, 192], [255, 0, 192], [128, 192, 192], [255, 192, 192], | |
[ 0, 128, 0], [192, 128, 0], [ 0, 255, 0], [192, 255, 0], | |
[ 0, 128, 192] | |
], | |
dtype=np.uint8) | |
labels = [ | |
"background", | |
"aeroplane", | |
"bicycle", | |
"bird", | |
"boat", | |
"bottle", | |
"bus", | |
"car", | |
"cat", | |
"chair", | |
"cow", | |
"diningtable", | |
"dog", | |
"horse", | |
"motorbike", | |
"person", | |
"pottedplant", | |
"sheep", | |
"sofa", | |
"train", | |
"tvmonitor", | |
] | |
# Draw the labels. Light colors use black text, dark colors use white text. | |
inverted = [ 0, 1, 4, 5, 8, 9, 12, 13, 16, 17, 20 ] | |
labels_colored = [] | |
for i in range(len(labels)): | |
r, g, b = palette[i] | |
label = labels[i] | |
color = "white" if i in inverted else "black" | |
text = "<span style='background-color: rgb(%d, %d, %d); color: %s; padding: 2px 4px;'>%s</span>" % (r, g, b, color, label) | |
labels_colored.append(text) | |
labels_text = " ".join(labels_colored) | |
title = "Semantic Segmentation with MobileViT and DeepLabV3" | |
description = """ | |
The input image is resized and center cropped to 512Γ512 pixels. The segmentation output is 32Γ32 pixels.<br> | |
This model has been trained on <a href="http://host.robots.ox.ac.uk/pascal/VOC/">Pascal VOC</a>. | |
The classes are: | |
""" + labels_text + "</p>" | |
article = """ | |
<div style='margin:20px auto;'> | |
<p>Sources:<p> | |
<p>π <a href="https://arxiv.org/abs/2110.02178">MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer</a></p> | |
<p>ποΈ Original pretrained weights from <a href="https://github.com/apple/ml-cvnets">this GitHub repo</a></p> | |
<p>π Example images from <a href="https://huggingface.co/datasets/mishig/sample_images">this dataset</a><p> | |
</div> | |
""" | |
examples = [ | |
["cat-3.jpg"], | |
["construction-site.jpg"], | |
["dog-cat.jpg"], | |
["football-match.jpg"], | |
] | |
def predict(image): | |
with torch.no_grad(): | |
inputs = feature_extractor(image, return_tensors="pt") | |
outputs = model(**inputs) | |
# Get preprocessed image. The pixel values don't need to be unnormalized | |
# for this particular model. | |
resized = (inputs["pixel_values"].numpy().squeeze().transpose(1, 2, 0)[..., ::-1] * 255).astype(np.uint8) | |
# Class predictions for each pixel. | |
classes = outputs.logits.argmax(1).squeeze().numpy().astype(np.uint8) | |
# Super slow method but it works... should probably improve this. | |
colored = np.zeros((classes.shape[0], classes.shape[1], 3), dtype=np.uint8) | |
for y in range(classes.shape[0]): | |
for x in range(classes.shape[1]): | |
colored[y, x] = palette[classes[y, x]] | |
# Resize predictions to input size (not original size). | |
colored = Image.fromarray(colored) | |
colored = colored.resize((resized.shape[1], resized.shape[0]), resample=Image.Resampling.NEAREST) | |
# Keep everything that is not background. | |
mask = (classes != 0) * 255 | |
mask = Image.fromarray(mask.astype(np.uint8)).convert("RGB") | |
mask = mask.resize((resized.shape[1], resized.shape[0]), resample=Image.Resampling.NEAREST) | |
# Blend with the input image. | |
resized = Image.fromarray(resized) | |
highlighted = Image.blend(resized, mask, 0.4) | |
#colored = colored.resize((256, 256), resample=Image.Resampling.BICUBIC) | |
#highlighted = highlighted.resize((256, 256), resample=Image.Resampling.BICUBIC) | |
return colored, highlighted | |
gr.Interface( | |
fn=predict, | |
inputs=gr.inputs.Image(label="Upload image"), | |
outputs=[gr.outputs.Image(label="Classes"), gr.outputs.Image(label="Overlay")], | |
title=title, | |
description=description, | |
article=article, | |
examples=examples, | |
).launch() | |