import gradio as gr import openai import requests import os import fileinput from dotenv import load_dotenv import io from PIL import Image from stability_sdk import client import stability_sdk.interfaces.gooseai.generation.generation_pb2 as generation title="Storytelling-AI-4-test" inputs_label="あなたが入力に応じてストーリーを生成します" outputs_label="AIが生成したストーリー" visual_outputs_label="AIが生成したビジュアルイメージ" description=""" - Sorytelling-AI-2が生成したタイトルと、あなたが選んだ選択肢を入力してください。エラーが発生した場合や、出力された内容が気に入らない場合は、再度送信してください。 """ article = """
リリースノート
注意事項
""" load_dotenv() openai.api_key = os.getenv('OPENAI_API_KEY') os.environ['STABILITY_HOST'] = 'grpc.stability.ai:443' stability_api = client.StabilityInference( key=os.getenv('STABILITY_KEY'), engine="stable-diffusion-xl-1024-v1-0", verbose=True, ) MODEL = "gpt-4" def get_filetext(filename, cache={}): if filename in cache: # キャッシュに保存されている場合は、キャッシュからファイル内容を取得する return cache[filename] else: if not os.path.exists(filename): raise ValueError(f"ファイル '{filename}' が見つかりませんでした") with open(filename, "r") as f: text = f.read() # ファイル内容をキャッシュする cache[filename] = text return text class OpenAI: @classmethod def chat_completion(cls, prompt, start_with=""): constraints = get_filetext(filename = "constraints.md") template = get_filetext(filename = "template.md") # ChatCompletion APIに渡すデータを定義する data = { "model": "gpt-4", "messages": [ {"role": "system", "content": constraints} ,{"role": "system", "content": template} ,{"role": "assistant", "content": "Sure!"} ,{"role": "user", "content": prompt} ,{"role": "assistant", "content": start_with} ], } # ChatCompletion APIを呼び出す response = requests.post( "https://api.openai.com/v1/chat/completions", headers={ "Content-Type": "application/json", "Authorization": f"Bearer {openai.api_key}" }, json=data ) # ChatCompletion APIから返された結果を取得する result = response.json() print(result) content = result["choices"][0]["message"]["content"].strip() visualize_prompt = content.split("## Prompt for Visual Expression\n\n")[1] answers = stability_api.generate( prompt=("high quality illustlation, Stunning detail, crisp images, high-contrast images, dynamic angles, cinematic lighting, sharp focus, Extremely detailed and high-definition depiction, fantastic colors, impressive shading, movie scene, glowing outline, An emotional scene with a mixture of anticipation and anxiety, taken with a cinema lens, wide shot" + visualize_prompt), steps=50, width=768, height=512, ) for resp in answers: for artifact in resp.artifacts: if artifact.finish_reason == generation.FILTER: print("NSFW") if artifact.type == generation.ARTIFACT_IMAGE: img = Image.open(io.BytesIO(artifact.binary)) return [content, img] class MasasanAI: @classmethod def generate_vision_prompt(cls, user_message): template = get_filetext(filename="template.md") prompt = f""" {user_message} --- 上記を元に、下記テンプレートを埋めてください。 --- {template} """ return prompt @classmethod def generate_vision(cls, user_message): prompt = MasasanAI.generate_vision_prompt(user_message); start_with = "" result = OpenAI.chat_completion(prompt=prompt, start_with=start_with) return result def main(): iface = gr.Interface(fn=MasasanAI.generate_vision, inputs=gr.Textbox(label=inputs_label), outputs=[gr.Textbox(label=inputs_label), gr.Image(label=visual_outputs_label)], title=title, description=description, article=article, allow_flagging='never' ) iface.launch() if __name__ == '__main__': main()