import torch from meshgpt_pytorch import ( MeshTransformer, mesh_render ) import igl import gradio as gr import numpy as np transformer = MeshTransformer.from_pretrained("MarcusLoren/MeshGPT-preview") def save_as_obj(file_path): v, f = igl.read_triangle_mesh(file_path) v, f, _, _ = igl.remove_unreferenced(v, f) c, _ = igl.orientable_patches(f) f, _ = igl.orient_outward(v, f, c) igl.write_triangle_mesh(file_path, v, f) return file_path def predict(text, num_input, num_temp): transformer.eval() labels = [label.strip() for label in text.split(',')] output = [] if num_input > 1: for label in labels: output.append((transformer.generate(texts = [label ] * num_input, temperature = num_temp))) else: output.append((transformer.generate(texts = [labels ] , temperature = num_temp))) mesh_render.save_rendering('./render.obj', output) return save_as_obj('./render.obj') gradio_app = gr.Interface( predict, inputs=[ gr.Textbox(label="Enter labels, separated by commas"), gr.Number(value=1, label="Number of examples per input"), gr.Slider(minimum=0, maximum=1, value=0, label="Temperature (0 to 1)") ], outputs=gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], label="3D Model"), title="MeshGPT Inference - (Rendering doesn't work, please download for best result)", ) if __name__ == "__main__": gradio_app.launch(share=False)