from fastapi import FastAPI from pydantic import BaseModel from huggingface_hub import InferenceClient import uvicorn app = FastAPI() # Initialize the InferenceClient with the specified model client = InferenceClient("nvidia/Llama-3.1-Nemotron-70B-Instruct-HF") # Define the structure of the request body class CourseRequest(BaseModel): course_name: str history: list = [] # Keeping history optional temperature: float = 0.0 max_new_tokens: int = 1048 top_p: float = 0.15 repetition_penalty: float = 1.0 # Format the prompt for the model def format_prompt(course_name, history): prompt = "" for user_prompt, bot_response in history: prompt += f"[INST] {user_prompt} [/INST] {bot_response} " prompt += f"[INST] Generate a roadmap for the course: {course_name} [/INST]" return prompt # Generate text using the specified parameters def generate(course_request: CourseRequest): temperature = max(float(course_request.temperature), 1e-2) top_p = float(course_request.top_p) generate_kwargs = { 'temperature': temperature, 'max_new_tokens': course_request.max_new_tokens, 'top_p': top_p, 'repetition_penalty': course_request.repetition_penalty, 'do_sample': True, 'seed': 42, } formatted_prompt = format_prompt(course_request.course_name, course_request.history) stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) output = "" for response in stream: output += response.token.text return output # Define the API endpoint for generating course roadmaps @app.post("/generate-roadmap/") async def generate_roadmap(course_request: CourseRequest): return {"roadmap": generate(course_request)} # Run the application (uncomment the next two lines if running this as a standalone script) # if __name__ == "__main__": # uvicorn.run(app, host="0.0.0.0", port=8000)