Spaces:
Runtime error
Runtime error
ManojINaik
commited on
Commit
•
4776181
1
Parent(s):
473963a
Update main.py
Browse files
main.py
CHANGED
@@ -3,44 +3,43 @@ from pydantic import BaseModel
|
|
3 |
from huggingface_hub import InferenceClient
|
4 |
import uvicorn
|
5 |
|
6 |
-
|
7 |
app = FastAPI()
|
8 |
|
9 |
-
|
|
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
temperature: float = 0.0
|
16 |
max_new_tokens: int = 1048
|
17 |
top_p: float = 0.15
|
18 |
repetition_penalty: float = 1.0
|
19 |
|
20 |
-
|
|
|
21 |
prompt = "<s>"
|
22 |
for user_prompt, bot_response in history:
|
23 |
-
prompt += f"[INST] {user_prompt} [/INST]"
|
24 |
-
|
25 |
-
prompt += f"[INST] {message} [/INST]"
|
26 |
return prompt
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
formatted_prompt = format_prompt(f"{item.system_prompt}, {item.prompt}", item.history)
|
44 |
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
|
45 |
output = ""
|
46 |
|
@@ -48,7 +47,11 @@ def generate(item: Item):
|
|
48 |
output += response.token.text
|
49 |
return output
|
50 |
|
51 |
-
|
52 |
-
|
53 |
-
|
|
|
54 |
|
|
|
|
|
|
|
|
3 |
from huggingface_hub import InferenceClient
|
4 |
import uvicorn
|
5 |
|
|
|
6 |
app = FastAPI()
|
7 |
|
8 |
+
# Initialize the InferenceClient with the specified model
|
9 |
+
client = InferenceClient("nvidia/Llama-3.1-Nemotron-70B-Instruct-HF")
|
10 |
|
11 |
+
# Define the structure of the request body
|
12 |
+
class CourseRequest(BaseModel):
|
13 |
+
course_name: str
|
14 |
+
history: list = [] # Keeping history optional
|
15 |
temperature: float = 0.0
|
16 |
max_new_tokens: int = 1048
|
17 |
top_p: float = 0.15
|
18 |
repetition_penalty: float = 1.0
|
19 |
|
20 |
+
# Format the prompt for the model
|
21 |
+
def format_prompt(course_name, history):
|
22 |
prompt = "<s>"
|
23 |
for user_prompt, bot_response in history:
|
24 |
+
prompt += f"[INST] {user_prompt} [/INST] {bot_response} </s> "
|
25 |
+
prompt += f"[INST] Generate a roadmap for the course: {course_name} [/INST]"
|
|
|
26 |
return prompt
|
27 |
|
28 |
+
# Generate text using the specified parameters
|
29 |
+
def generate(course_request: CourseRequest):
|
30 |
+
temperature = max(float(course_request.temperature), 1e-2)
|
31 |
+
top_p = float(course_request.top_p)
|
32 |
+
|
33 |
+
generate_kwargs = {
|
34 |
+
'temperature': temperature,
|
35 |
+
'max_new_tokens': course_request.max_new_tokens,
|
36 |
+
'top_p': top_p,
|
37 |
+
'repetition_penalty': course_request.repetition_penalty,
|
38 |
+
'do_sample': True,
|
39 |
+
'seed': 42,
|
40 |
+
}
|
41 |
+
|
42 |
+
formatted_prompt = format_prompt(course_request.course_name, course_request.history)
|
|
|
43 |
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
|
44 |
output = ""
|
45 |
|
|
|
47 |
output += response.token.text
|
48 |
return output
|
49 |
|
50 |
+
# Define the API endpoint for generating course roadmaps
|
51 |
+
@app.post("/generate-roadmap/")
|
52 |
+
async def generate_roadmap(course_request: CourseRequest):
|
53 |
+
return {"roadmap": generate(course_request)}
|
54 |
|
55 |
+
# Run the application (uncomment the next two lines if running this as a standalone script)
|
56 |
+
# if __name__ == "__main__":
|
57 |
+
# uvicorn.run(app, host="0.0.0.0", port=8000)
|