from gradio.components import Component import gradio as gr import pandas as pd from abc import ABC, abstractclassmethod import inspect class BaseTCOModel(ABC): # TO DO: Find way to specify which component should be used for computing cost def __setattr__(self, name, value): if isinstance(value, Component): self._components.append(value) self.__dict__[name] = value def __init__(self): super(BaseTCOModel, self).__setattr__("_components", []) self.use_case = None self.num_users = None self.input_tokens = None self.output_tokens = None def get_components(self) -> list[Component]: return self._components def get_components_for_cost_computing(self): return self.components_for_cost_computing def get_name(self): return self.name def register_components_for_cost_computing(self): args = inspect.getfullargspec(self.compute_cost_per_token)[0][1:] self.components_for_cost_computing = [self.__getattribute__(arg) for arg in args] @abstractclassmethod def compute_cost_per_token(self): pass @abstractclassmethod def render(self): pass def set_name(self, name): self.name = name def set_formula(self, formula): self.formula = formula def get_formula(self): return self.formula def set_latency(self, latency): self.latency = latency def get_latency(self): return self.latency class OpenAIModel(BaseTCOModel): def __init__(self): self.set_name("(SaaS) OpenAI") self.set_formula(r"""$CR = \frac{CIT\_1K \times IT + COT\_1K \times OT}{1000}$
with:
CR = Cost per Request
CIT_1K = Cost per 1000 Input Tokens (from OpenAI's pricing web page)
COT_1K = Cost per 1000 Output Tokens
IT = Input Tokens
OT = Output Tokens """) self.latency = "15s" #Default value for GPT4 super().__init__() def render(self): def on_model_change(model): if model == "GPT-4": self.latency = "15s" return gr.Dropdown.update(choices=["8K", "32K"]) else: self.latency = "5s" return gr.Dropdown.update(choices=["4K", "16K"], value="4K") self.model = gr.Dropdown(["GPT-4", "GPT-3.5 Turbo"], value="GPT-4", label="OpenAI models", interactive=True, visible=False) self.context_length = gr.Dropdown(["8K", "32K"], value="8K", interactive=True, label="Context size", visible=False, info="Number of tokens the model considers when processing text") self.model.change(on_model_change, inputs=self.model, outputs=self.context_length) def compute_cost_per_token(self, model, context_length): """Cost per token = """ if model == "GPT-4" and context_length == "8K": cost_per_1k_input_tokens = 0.03 cost_per_1k_output_tokens = 0.06 elif model == "GPT-4" and context_length == "32K": cost_per_1k_input_tokens = 0.06 cost_per_1k_output_tokens = 0.12 elif model == "GPT-3.5" and context_length == "4K": cost_per_1k_input_tokens = 0.0015 cost_per_1k_output_tokens = 0.002 else: cost_per_1k_input_tokens = 0.003 cost_per_1k_output_tokens = 0.004 cost_per_input_token = (cost_per_1k_input_tokens / 1000) cost_per_output_token = (cost_per_1k_output_tokens / 1000) return cost_per_input_token, cost_per_output_token class OpenSourceLlama2Model(BaseTCOModel): def __init__(self): self.set_name("(Open source) Llama 2") self.set_formula(r"""$CT = \frac{VM\_CH \times 100}{3600 \times U} \times (\frac{IT}{ITS} + \frac{OT}{OTS})$
with:
CT = Cost per Token
VM_CH = VM Cost per Hour
ITS = Input Tokens per Second
OTS = Output Tokens per Second
U = Used
IT = Input Tokens
OT = Output Tokens """) self.set_latency("27s") super().__init__() def render(self): vm_choices = ["1x Nvidia A100 (Azure NC24ads A100 v4)", "2x Nvidia A100 (Azure NC24ads A100 v4)", "2x Nvidia A100 (Azure ND96amsr A100 v4)"] def on_model_change(model): if model == "Llama 2 7B": return [gr.Dropdown.update(choices=vm_choices), gr.Markdown.update(value="To see the benchmark results use for the Llama2-7B model, [click here](https://example.com/script)"), gr.Number.update(value=3.6730), gr.Number.update(value=694.38), gr.Number.update(value=694.38), ] else: not_supported_vm = ["1x Nvidia A100 (Azure NC24ads A100 v4)", "2x Nvidia A100 (Azure NC24ads A100 v4)"] choices = [x for x in vm_choices if x not in not_supported_vm] return [gr.Dropdown.update(choices=choices, value="2x Nvidia A100 (Azure ND96amsr A100 v4)"), gr.Markdown.update(value="To see the benchmark results used for the Llama2-70B model, [click here](https://www.cursor.so/blog/llama-inference#user-content-fn-llama-paper)"), gr.Number.update(value=2*37.186), gr.Number.update(value=2860), gr.Number.update(value=18.545), ] def on_vm_change(model, vm): # TO DO: load info from CSV if model == "Llama 2 7B" and vm == "1x Nvidia A100 (Azure NC24ads A100 v4)": return [gr.Number.update(value=4.777), gr.Number.update(value=694.38), gr.Number.update(value=694.38)] elif model == "Llama 2 7B" and vm == "2x Nvidia A100 (Azure NC24ads A100 v4)": return [gr.Number.update(value=2*4.777), gr.Number.update(value=1388.76), gr.Number.update(value=1388.76)] elif model == "Llama 2 7B" and vm == "2x Nvidia A100 (Azure ND96amsr A100 v4)": return [gr.Number.update(value=2*37.186), gr.Number.update(value=2777.52), gr.Number.update(value=2777.52)] elif model == "Llama 2 70B" and vm == "2x Nvidia A100 (Azure ND96amsr A100 v4)": return [gr.Number.update(value=2*37.186), gr.Number.update(value=2860), gr.Number.update(value=18.449)] self.model = gr.Dropdown(["Llama 2 7B", "Llama 2 70B"], value="Llama 2 70B", label="OpenSource models", visible=False) self.vm = gr.Dropdown(choices=["2x Nvidia A100 (Azure ND96amsr A100 v4)"], value="2x Nvidia A100 (Azure ND96amsr A100 v4)", visible=False, label="Instance of VM with GPU", info="Your options for this choice depend on the model you previously chose" ) self.vm_cost_per_hour = gr.Number(2*37.186, label="VM instance cost per hour", interactive=False, visible=False) self.input_tokens_per_second = gr.Number(2860, visible=False, label="Number of output tokens per second for this specific model and VM instance", interactive=False ) self.output_tokens_per_second = gr.Number(18.449, visible=False, label="Number of output tokens per second for this specific model and VM instance", interactive=False ) self.info = gr.Markdown("To see the script used to benchmark the Llama2-70B model, [click here](https://www.cursor.so/blog/llama-inference#user-content-fn-llama-paper)", interactive=False, visible=False) self.model.change(on_model_change, inputs=self.model, outputs=[self.vm, self.info, self.vm_cost_per_hour, self.input_tokens_per_second, self.output_tokens_per_second]) self.vm.change(on_vm_change, inputs=[self.model, self.vm], outputs=[self.vm_cost_per_hour, self.input_tokens_per_second, self.output_tokens_per_second]) self.used = gr.Slider(minimum=0.01, value=30., step=0.01, label="% used", info="Percentage of time the GPU is used", interactive=True, visible=False) def compute_cost_per_token(self, vm_cost_per_hour, input_tokens_per_second, output_tokens_per_second, used): cost_per_input_token = vm_cost_per_hour * 100 / (3600 * used * input_tokens_per_second) cost_per_output_token = vm_cost_per_hour * 100 / (3600 * used * output_tokens_per_second) return cost_per_input_token, cost_per_output_token class OpenSourceDIY(BaseTCOModel): def __init__(self): self.set_name("(Open source) DIY") self.set_formula(r"""$CT = \frac{VM\_CH \times 100}{3600 \times U} \times (\frac{IT}{ITS} + \frac{OT}{OTS})$
with:
CT = Cost per Token
VM_CH = VM Cost per Hour
ITS = Input Tokens per Second
OTS = Output Tokens per Second
U = Used
IT = Input Tokens
OT = Output Tokens """) self.set_latency("The latency can't be estimated in the DIY scenario for the model isn't defined") super().__init__() def render(self): self.info = gr.Markdown("Compute the cost/token based on our formula below, using your own parameters", visible=False) self.display_formula = gr.Markdown(r"""$CT = \frac{VM\_CH \times 100}{3600 \times U} \times (\frac{IT}{ITS} + \frac{OT}{OTS})$
with:
CT = Cost per Token
VM_CH = VM Cost per Hour
ITS = Input Tokens per Second
OTS = Output Tokens per Second
U = Used
IT = Input Tokens
OT = Output Tokens """, visible=False) self.vm_cost_per_hour = gr.Number(3.5, label="VM instance cost per hour", interactive=True, visible=False) self.input_tokens_per_second = gr.Number(300, visible=False, label="Number of input tokens per second processed for this specific model and VM instance", interactive=True ) self.output_tokens_per_second = gr.Number(300, visible=False, label="Number of output tokens per second processed for this specific model and VM instance", interactive=True ) self.used = gr.Slider(minimum=0.01, value=50., step=0.01, label="% used", info="Percentage of time the GPU is used", interactive=True, visible=False) def compute_cost_per_token(self, vm_cost_per_hour, input_tokens_per_second, output_tokens_per_second, used): cost_per_input_token = vm_cost_per_hour * 100 / (3600 * used * input_tokens_per_second) cost_per_output_token = vm_cost_per_hour * 100 / (3600 * used * output_tokens_per_second) return cost_per_input_token, cost_per_output_token class CohereModel(BaseTCOModel): def __init__(self): self.set_name("(SaaS) Cohere") self.set_formula(r"""$CR = \frac{CT\_1M \times (IT + OT)}{1000000}$
with:
CR = Cost per Request
CT_1M = Cost per one million Tokens (from Cohere's pricing web page)
IT = Input Tokens
OT = Output Tokens """) self.set_latency("") super().__init__() def render(self): self.model = gr.Dropdown(["Default", "Custom"], value="Default", label="Model", interactive=True, visible=False) if self.use_case == "Summarize": self.model: gr.Dropdown.update(choices=["Default"]) elif self.use_case == "Question-answering": self.model: gr.Dropdown.update(choices=["Default", "Custom"]) else: self.model: gr.Dropdown.update(choices=["Default", "Custom"]) def compute_cost_per_token(self, model): """Cost per token = """ use_case = self.use_case if use_case == "Generate": if model == "Default": cost_per_1M_tokens = 15 else: cost_per_1M_tokens = 30 elif use_case == "Summarize": cost_per_1M_tokens = 15 else: cost_per_1M_tokens = 200 cost_per_input_token = cost_per_1M_tokens / 1000000 cost_per_output_token = cost_per_1M_tokens / 1000000 return cost_per_input_token, cost_per_output_token class ModelPage: def __init__(self, Models: BaseTCOModel): self.models: list[BaseTCOModel] = [] for Model in Models: model = Model() self.models.append(model) def render(self): for model in self.models: model.render() model.register_components_for_cost_computing() def get_all_components(self) -> list[Component]: output = [] for model in self.models: output += model.get_components() return output def get_all_components_for_cost_computing(self) -> list[Component]: output = [] for model in self.models: output += model.get_components_for_cost_computing() return output def make_model_visible(self, name:str, use_case: gr.Dropdown, num_users: gr.Number, input_tokens: gr.Slider, output_tokens: gr.Slider): # First decide which indexes output = [] for model in self.models: if model.get_name() == name: output+= [gr.update(visible=True)] * len(model.get_components()) # Set use_case and num_users values in the model model.use_case = use_case model.num_users = num_users model.input_tokens = input_tokens model.output_tokens = output_tokens else: output+= [gr.update(visible=False)] * len(model.get_components()) return output def compute_cost_per_token(self, *args): begin=0 current_model = args[-1] for model in self.models: model_n_args = len(model.get_components_for_cost_computing()) if current_model == model.get_name(): model_args = args[begin:begin+model_n_args] cost_per_input_token, cost_per_output_token = model.compute_cost_per_token(*model_args) model_tco = cost_per_input_token * model.input_tokens + cost_per_output_token * model.output_tokens formula = model.get_formula() latency = model.get_latency() return f"Model {current_model} has a cost/request of: ${model_tco}", model_tco, formula, f"The average latency of this model is {latency}" begin = begin+model_n_args