jadehardouin commited on
Commit
bbc8453
1 Parent(s): 4424c49

Update models.py

Browse files
Files changed (1) hide show
  1. models.py +14 -5
models.py CHANGED
@@ -112,11 +112,21 @@ class OpenSourceLlama2Model(BaseTCOModel):
112
 
113
  def on_model_change(model):
114
  if model == "Llama 2 7B":
115
- return [gr.Dropdown.update(choices=vm_choices), gr.Markdown.update(visible=True), gr.Markdown.update(visible=False)]
 
 
 
 
 
116
  else:
117
  not_supported_vm = ["1x Nvidia A100 (Azure NC24ads A100 v4)", "2x Nvidia A100 (Azure NC48ads A100 v4)"]
118
  choices = [x for x in vm_choices if x not in not_supported_vm]
119
- return [gr.Dropdown.update(choices=choices), gr.Markdown.update(visible=False), gr.Markdown.update(visible=True)]
 
 
 
 
 
120
 
121
  def on_vm_change(model, vm):
122
  # TO DO: load info from CSV
@@ -144,10 +154,9 @@ class OpenSourceLlama2Model(BaseTCOModel):
144
  )
145
  self.input_length = gr.Number(233, label="Average number of input tokens", info="This is the number of input tokens used when the model was benchmarked to get the number of tokens/second it processes",
146
  interactive=False, visible=False)
147
- self.info_7B = gr.Markdown("To see the script used to benchmark the Llama2-7B model, [click here](https://example.com/script)", interactive=False, visible=False)
148
- self.info_70B = gr.Markdown("To see the benchmark results used for the Llama2-70B model, [click here](https://www.cursor.so/blog/llama-inference#user-content-fn-llama-paper)", interactive=False, visible=False)
149
 
150
- self.model.change(on_model_change, inputs=self.model, outputs=[self.vm, self.info_7B, self.info_70B])
151
  self.vm.change(on_vm_change, inputs=[self.model, self.vm], outputs=[self.vm_cost_per_hour, self.tokens_per_second])
152
  self.maxed_out = gr.Slider(minimum=0.01, value=50., step=0.01, label="% maxed out",
153
  info="How much the GPU is fully used",
 
112
 
113
  def on_model_change(model):
114
  if model == "Llama 2 7B":
115
+ return [gr.Dropdown.update(choices=vm_choices),
116
+ gr.Markdown.update(value="To see the script used to benchmark the Llama2-7B model, [click here](https://example.com/script)"),
117
+ gr.Number.update(value=3.6730),
118
+ gr.Number.update(value=694.38),
119
+ gr.Number.update(visible=True)
120
+ ]
121
  else:
122
  not_supported_vm = ["1x Nvidia A100 (Azure NC24ads A100 v4)", "2x Nvidia A100 (Azure NC48ads A100 v4)"]
123
  choices = [x for x in vm_choices if x not in not_supported_vm]
124
+ return [gr.Dropdown.update(choices=choices, value="4x Nvidia A100 (Azure NC48ads A100 v4)"),
125
+ gr.Markdown.update(value="To see the benchmark results used for the Llama2-70B model, [click here](https://www.cursor.so/blog/llama-inference#user-content-fn-llama-paper)"),
126
+ gr.Number.update(value=14.692),
127
+ gr.Number.update(value=18.6),
128
+ gr.Number.update(visible=False)
129
+ ]
130
 
131
  def on_vm_change(model, vm):
132
  # TO DO: load info from CSV
 
154
  )
155
  self.input_length = gr.Number(233, label="Average number of input tokens", info="This is the number of input tokens used when the model was benchmarked to get the number of tokens/second it processes",
156
  interactive=False, visible=False)
157
+ self.info = gr.Markdown("To see the script used to benchmark the Llama2-7B model, [click here](https://example.com/script)", interactive=False, visible=False)
 
158
 
159
+ self.model.change(on_model_change, inputs=self.model, outputs=[self.vm, self.info, self.vm_cost_per_hour, self.tokens_per_second, self.input_length])
160
  self.vm.change(on_vm_change, inputs=[self.model, self.vm], outputs=[self.vm_cost_per_hour, self.tokens_per_second])
161
  self.maxed_out = gr.Slider(minimum=0.01, value=50., step=0.01, label="% maxed out",
162
  info="How much the GPU is fully used",