jadehardouin commited on
Commit
8e75c4f
1 Parent(s): 564f119

Update models.py

Browse files
Files changed (1) hide show
  1. models.py +6 -3
models.py CHANGED
@@ -105,12 +105,13 @@ class OpenAIModel(BaseTCOModel):
105
  label="($) Price/1K output prompt tokens",
106
  interactive=False
107
  )
108
- self.info = gr.Markdown("The cost per input and output tokens values are from OpenAI's pricing web page [here](https://openai.com/pricing)", interactive=False, visible=False)
109
  self.model.change(on_model_change, inputs=self.model, outputs=self.context_length).then(define_cost_per_token, inputs=[self.model, self.context_length], outputs=[self.input_tokens_cost_per_second, self.output_tokens_cost_per_second])
110
  self.context_length.change(define_cost_per_token, inputs=[self.model, self.context_length], outputs=[self.input_tokens_cost_per_second, self.output_tokens_cost_per_second])
111
 
112
  self.labor = gr.Number(0, visible=False,
113
  label="($) Labor cost per month",
 
114
  interactive=True
115
  )
116
 
@@ -151,10 +152,11 @@ class OpenSourceLlama2Model(BaseTCOModel):
151
  label="($) Price/1K output prompt tokens",
152
  interactive=False
153
  )
154
- self.info = gr.Markdown("For the Llama2-70B model, we took the cost per input and output tokens values from the benchmark results [here](https://www.cursor.so/blog/llama-inference#user-content-fn-llama-paper)", interactive=False, visible=False)
155
 
156
  self.labor = gr.Number(10000, visible=False,
157
  label="($) Labor cost per month",
 
158
  interactive=True
159
  )
160
 
@@ -195,6 +197,7 @@ class CohereModel(BaseTCOModel):
195
 
196
  self.labor = gr.Number(0, visible=False,
197
  label="($) Labor cost per month",
 
198
  interactive=True
199
  )
200
 
@@ -268,6 +271,6 @@ class ModelPage:
268
  formula = model.get_formula()
269
  latency = model.get_latency()
270
 
271
- return f"Model {current_model} has a cost/request of: ${model_tco}", model_tco, formula, f"The average latency of this model is {latency}", labor_cost
272
 
273
  begin = begin+model_n_args
 
105
  label="($) Price/1K output prompt tokens",
106
  interactive=False
107
  )
108
+ self.info = gr.Markdown("The cost per input and output tokens values are from OpenAI's [pricing web page](https://openai.com/pricing)", interactive=False, visible=False)
109
  self.model.change(on_model_change, inputs=self.model, outputs=self.context_length).then(define_cost_per_token, inputs=[self.model, self.context_length], outputs=[self.input_tokens_cost_per_second, self.output_tokens_cost_per_second])
110
  self.context_length.change(define_cost_per_token, inputs=[self.model, self.context_length], outputs=[self.input_tokens_cost_per_second, self.output_tokens_cost_per_second])
111
 
112
  self.labor = gr.Number(0, visible=False,
113
  label="($) Labor cost per month",
114
+ info="This is how much it will cost you to have an engineer specialized in Machine Learning take care of the deployment of your model service",
115
  interactive=True
116
  )
117
 
 
152
  label="($) Price/1K output prompt tokens",
153
  interactive=False
154
  )
155
+ self.info = gr.Markdown("For the Llama2-70B model, we took the cost per input and output tokens values from [these benchmark results](https://www.cursor.so/blog/llama-inference#user-content-fn-llama-paper)", interactive=False, visible=False)
156
 
157
  self.labor = gr.Number(10000, visible=False,
158
  label="($) Labor cost per month",
159
+ info="This is how much it will cost you to have an engineer specialized in Machine Learning take care of the deployment of your model service",
160
  interactive=True
161
  )
162
 
 
197
 
198
  self.labor = gr.Number(0, visible=False,
199
  label="($) Labor cost per month",
200
+ info="This is how much it will cost you to have an engineer specialized in Machine Learning take care of the deployment of your model service",
201
  interactive=True
202
  )
203
 
 
271
  formula = model.get_formula()
272
  latency = model.get_latency()
273
 
274
+ return f"Model {current_model} has a cost/request of: ${model_tco:.5f}", model_tco, formula, f"The average latency of this model is {latency}", labor_cost
275
 
276
  begin = begin+model_n_args