Spaces:
Running
Running
from gradio.components import Component | |
import gradio as gr | |
import pandas as pd | |
from abc import ABC, abstractclassmethod | |
import inspect | |
class BaseTCOModel(ABC): | |
# TO DO: Find way to specify which component should be used for computing cost | |
def __setattr__(self, name, value): | |
if isinstance(value, Component): | |
self._components.append(value) | |
self.__dict__[name] = value | |
def __init__(self): | |
super(BaseTCOModel, self).__setattr__("_components", []) | |
self.use_case = None | |
self.num_users = None | |
self.input_tokens = None | |
self.output_tokens = None | |
def get_components(self) -> list[Component]: | |
return self._components | |
def get_components_for_cost_computing(self): | |
return self.components_for_cost_computing | |
def get_name(self): | |
return self.name | |
def register_components_for_cost_computing(self): | |
args = inspect.getfullargspec(self.compute_cost_per_token)[0][1:] | |
self.components_for_cost_computing = [self.__getattribute__(arg) for arg in args] | |
def compute_cost_per_token(self): | |
pass | |
def render(self): | |
pass | |
def set_name(self, name): | |
self.name = name | |
def set_formula(self, formula): | |
self.formula = formula | |
def get_formula(self): | |
return self.formula | |
def set_latency(self, latency): | |
self.latency = latency | |
def get_latency(self): | |
return self.latency | |
class OpenAIModel(BaseTCOModel): | |
def __init__(self): | |
self.set_name("(SaaS) OpenAI") | |
self.set_formula(r"""$CR = \frac{CIT\_1K \times IT + COT\_1K \times OT}{1000}$ <br> | |
with: <br> | |
CR = Cost per Request <br> | |
CIT_1K = Cost per 1000 Input Tokens (from OpenAI's pricing web page) <br> | |
COT_1K = Cost per 1000 Output Tokens <br> | |
IT = Input Tokens <br> | |
OT = Output Tokens | |
""") | |
self.latency = "15s" #Default value for GPT4 | |
super().__init__() | |
def render(self): | |
def on_model_change(model): | |
if model == "GPT-4": | |
self.latency = "15s" | |
return gr.Dropdown.update(choices=["8K", "32K"]) | |
else: | |
self.latency = "5s" | |
return gr.Dropdown.update(choices=["4K", "16K"], value="4K") | |
self.model = gr.Dropdown(["GPT-4", "GPT-3.5 Turbo"], value="GPT-4", | |
label="OpenAI models", | |
interactive=True, visible=False) | |
self.context_length = gr.Dropdown(["8K", "32K"], value="8K", interactive=True, | |
label="Context size", | |
visible=False, info="Number of tokens the model considers when processing text") | |
self.model.change(on_model_change, inputs=self.model, outputs=self.context_length) | |
def compute_cost_per_token(self, model, context_length): | |
"""Cost per token = """ | |
if model == "GPT-4" and context_length == "8K": | |
cost_per_1k_input_tokens = 0.03 | |
cost_per_1k_output_tokens = 0.06 | |
elif model == "GPT-4" and context_length == "32K": | |
cost_per_1k_input_tokens = 0.06 | |
cost_per_1k_output_tokens = 0.12 | |
elif model == "GPT-3.5" and context_length == "4K": | |
cost_per_1k_input_tokens = 0.0015 | |
cost_per_1k_output_tokens = 0.002 | |
else: | |
cost_per_1k_input_tokens = 0.003 | |
cost_per_1k_output_tokens = 0.004 | |
cost_per_input_token = (cost_per_1k_input_tokens / 1000) | |
cost_per_output_token = (cost_per_1k_output_tokens / 1000) | |
return cost_per_input_token, cost_per_output_token | |
class OpenSourceLlama2Model(BaseTCOModel): | |
def __init__(self): | |
self.set_name("(Open source) Llama 2") | |
self.set_formula(r"""$CT = \frac{VM\_CH \times 100}{3600 \times U} \times (\frac{IT}{ITS} + \frac{OT}{OTS})$<br> | |
with: <br> | |
CT = Cost per Token <br> | |
VM_CH = VM Cost per Hour <br> | |
ITS = Input Tokens per Second <br> | |
OTS = Output Tokens per Second <br> | |
U = Used <br> | |
IT = Input Tokens <br> | |
OT = Output Tokens | |
""") | |
self.set_latency("27s") | |
super().__init__() | |
def render(self): | |
vm_choices = ["1x Nvidia A100 (Azure NC24ads A100 v4)", | |
"2x Nvidia A100 (Azure NC24ads A100 v4)", | |
"2x Nvidia A100 (Azure ND96amsr A100 v4)"] | |
def on_model_change(model): | |
if model == "Llama 2 7B": | |
return [gr.Dropdown.update(choices=vm_choices), | |
gr.Markdown.update(value="To see the benchmark results use for the Llama2-7B model, [click here](https://example.com/script)"), | |
gr.Number.update(value=3.6730), | |
gr.Number.update(value=694.38), | |
gr.Number.update(value=694.38), | |
] | |
else: | |
not_supported_vm = ["1x Nvidia A100 (Azure NC24ads A100 v4)", "2x Nvidia A100 (Azure NC24ads A100 v4)"] | |
choices = [x for x in vm_choices if x not in not_supported_vm] | |
return [gr.Dropdown.update(choices=choices, value="2x Nvidia A100 (Azure ND96amsr A100 v4)"), | |
gr.Markdown.update(value="To see the benchmark results used for the Llama2-70B model, [click here](https://www.cursor.so/blog/llama-inference#user-content-fn-llama-paper)"), | |
gr.Number.update(value=2*37.186), | |
gr.Number.update(value=2860), | |
gr.Number.update(value=18.545), | |
] | |
def on_vm_change(model, vm): | |
# TO DO: load info from CSV | |
if model == "Llama 2 7B" and vm == "1x Nvidia A100 (Azure NC24ads A100 v4)": | |
return [gr.Number.update(value=4.777), gr.Number.update(value=694.38), gr.Number.update(value=694.38)] | |
elif model == "Llama 2 7B" and vm == "2x Nvidia A100 (Azure NC24ads A100 v4)": | |
return [gr.Number.update(value=2*4.777), gr.Number.update(value=1388.76), gr.Number.update(value=1388.76)] | |
elif model == "Llama 2 7B" and vm == "2x Nvidia A100 (Azure ND96amsr A100 v4)": | |
return [gr.Number.update(value=2*37.186), gr.Number.update(value=2777.52), gr.Number.update(value=2777.52)] | |
elif model == "Llama 2 70B" and vm == "2x Nvidia A100 (Azure ND96amsr A100 v4)": | |
return [gr.Number.update(value=2*37.186), gr.Number.update(value=2860), gr.Number.update(value=18.449)] | |
self.model = gr.Dropdown(["Llama 2 7B", "Llama 2 70B"], value="Llama 2 70B", label="OpenSource models", visible=False) | |
self.vm = gr.Dropdown(choices=["2x Nvidia A100 (Azure ND96amsr A100 v4)"], | |
value="2x Nvidia A100 (Azure ND96amsr A100 v4)", | |
visible=False, | |
label="Instance of VM with GPU", | |
info="Your options for this choice depend on the model you previously chose" | |
) | |
self.vm_cost_per_hour = gr.Number(2*37.186, label="VM instance cost per hour", | |
interactive=False, visible=False) | |
self.input_tokens_per_second = gr.Number(2860, visible=False, | |
label="Number of output tokens per second for this specific model and VM instance", | |
interactive=False | |
) | |
self.output_tokens_per_second = gr.Number(18.449, visible=False, | |
label="Number of output tokens per second for this specific model and VM instance", | |
interactive=False | |
) | |
self.info = gr.Markdown("To see the script used to benchmark the Llama2-70B model, [click here](https://www.cursor.so/blog/llama-inference#user-content-fn-llama-paper)", interactive=False, visible=False) | |
self.model.change(on_model_change, inputs=self.model, outputs=[self.vm, self.info, self.vm_cost_per_hour, self.input_tokens_per_second, self.output_tokens_per_second]) | |
self.vm.change(on_vm_change, inputs=[self.model, self.vm], outputs=[self.vm_cost_per_hour, self.input_tokens_per_second, self.output_tokens_per_second]) | |
self.used = gr.Slider(minimum=0.01, value=30., step=0.01, label="% used", | |
info="Percentage of time the GPU is used", | |
interactive=True, | |
visible=False) | |
def compute_cost_per_token(self, vm_cost_per_hour, input_tokens_per_second, output_tokens_per_second, used): | |
cost_per_input_token = vm_cost_per_hour * 100 / (3600 * used * input_tokens_per_second) | |
cost_per_output_token = vm_cost_per_hour * 100 / (3600 * used * output_tokens_per_second) | |
return cost_per_input_token, cost_per_output_token | |
class OpenSourceDIY(BaseTCOModel): | |
def __init__(self): | |
self.set_name("(Open source) DIY") | |
self.set_formula(r"""$CT = \frac{VM\_CH \times 100}{3600 \times U} \times (\frac{IT}{ITS} + \frac{OT}{OTS})$<br> | |
with: <br> | |
CT = Cost per Token <br> | |
VM_CH = VM Cost per Hour <br> | |
ITS = Input Tokens per Second <br> | |
OTS = Output Tokens per Second <br> | |
U = Used <br> | |
IT = Input Tokens <br> | |
OT = Output Tokens | |
""") | |
self.set_latency("The latency can't be estimated in the DIY scenario for the model isn't defined") | |
super().__init__() | |
def render(self): | |
self.info = gr.Markdown("Compute the cost/token based on our formula below, using your own parameters", visible=False) | |
self.display_formula = gr.Markdown(r"""$CT = \frac{VM\_CH \times 100}{3600 \times U} \times (\frac{IT}{ITS} + \frac{OT}{OTS})$<br> | |
with: <br> | |
CT = Cost per Token <br> | |
VM_CH = VM Cost per Hour <br> | |
ITS = Input Tokens per Second <br> | |
OTS = Output Tokens per Second <br> | |
U = Used <br> | |
IT = Input Tokens <br> | |
OT = Output Tokens | |
""", visible=False) | |
self.vm_cost_per_hour = gr.Number(3.5, label="VM instance cost per hour", | |
interactive=True, visible=False) | |
self.input_tokens_per_second = gr.Number(300, visible=False, | |
label="Number of input tokens per second processed for this specific model and VM instance", | |
interactive=True | |
) | |
self.output_tokens_per_second = gr.Number(300, visible=False, | |
label="Number of output tokens per second processed for this specific model and VM instance", | |
interactive=True | |
) | |
self.used = gr.Slider(minimum=0.01, value=50., step=0.01, label="% used", | |
info="Percentage of time the GPU is used", | |
interactive=True, | |
visible=False) | |
def compute_cost_per_token(self, vm_cost_per_hour, input_tokens_per_second, output_tokens_per_second, used): | |
cost_per_input_token = vm_cost_per_hour * 100 / (3600 * used * input_tokens_per_second) | |
cost_per_output_token = vm_cost_per_hour * 100 / (3600 * used * output_tokens_per_second) | |
return cost_per_input_token, cost_per_output_token | |
class CohereModel(BaseTCOModel): | |
def __init__(self): | |
self.set_name("(SaaS) Cohere") | |
self.set_formula(r"""$CR = \frac{CT\_1M \times (IT + OT)}{1000000}$ <br> | |
with: <br> | |
CR = Cost per Request <br> | |
CT_1M = Cost per one million Tokens (from Cohere's pricing web page) <br> | |
IT = Input Tokens <br> | |
OT = Output Tokens | |
""") | |
self.set_latency("") | |
super().__init__() | |
def render(self): | |
self.model = gr.Dropdown(["Default", "Custom"], value="Default", | |
label="Model", | |
interactive=True, visible=False) | |
if self.use_case == "Summarize": | |
self.model: gr.Dropdown.update(choices=["Default"]) | |
elif self.use_case == "Question-answering": | |
self.model: gr.Dropdown.update(choices=["Default", "Custom"]) | |
else: | |
self.model: gr.Dropdown.update(choices=["Default", "Custom"]) | |
def compute_cost_per_token(self, model): | |
"""Cost per token = """ | |
use_case = self.use_case | |
if use_case == "Generate": | |
if model == "Default": | |
cost_per_1M_tokens = 15 | |
else: | |
cost_per_1M_tokens = 30 | |
elif use_case == "Summarize": | |
cost_per_1M_tokens = 15 | |
else: | |
cost_per_1M_tokens = 200 | |
cost_per_input_token = cost_per_1M_tokens / 1000000 | |
cost_per_output_token = cost_per_1M_tokens / 1000000 | |
return cost_per_input_token, cost_per_output_token | |
class ModelPage: | |
def __init__(self, Models: BaseTCOModel): | |
self.models: list[BaseTCOModel] = [] | |
for Model in Models: | |
model = Model() | |
self.models.append(model) | |
def render(self): | |
for model in self.models: | |
model.render() | |
model.register_components_for_cost_computing() | |
def get_all_components(self) -> list[Component]: | |
output = [] | |
for model in self.models: | |
output += model.get_components() | |
return output | |
def get_all_components_for_cost_computing(self) -> list[Component]: | |
output = [] | |
for model in self.models: | |
output += model.get_components_for_cost_computing() | |
return output | |
def make_model_visible(self, name:str, use_case: gr.Dropdown, num_users: gr.Number, input_tokens: gr.Slider, output_tokens: gr.Slider): | |
# First decide which indexes | |
output = [] | |
for model in self.models: | |
if model.get_name() == name: | |
output+= [gr.update(visible=True)] * len(model.get_components()) | |
# Set use_case and num_users values in the model | |
model.use_case = use_case | |
model.num_users = num_users | |
model.input_tokens = input_tokens | |
model.output_tokens = output_tokens | |
else: | |
output+= [gr.update(visible=False)] * len(model.get_components()) | |
return output | |
def compute_cost_per_token(self, *args): | |
begin=0 | |
current_model = args[-1] | |
for model in self.models: | |
model_n_args = len(model.get_components_for_cost_computing()) | |
if current_model == model.get_name(): | |
model_args = args[begin:begin+model_n_args] | |
cost_per_input_token, cost_per_output_token = model.compute_cost_per_token(*model_args) | |
model_tco = cost_per_input_token * model.input_tokens + cost_per_output_token * model.output_tokens | |
formula = model.get_formula() | |
latency = model.get_latency() | |
return f"Model {current_model} has a cost/request of: ${model_tco}", model_tco, formula, f"The average latency of this model is {latency}" | |
begin = begin+model_n_args |