Spaces:
Running
Running
File size: 10,890 Bytes
e0e93c4 50f19fa 044dd38 ecaa1ea ea19e17 ecaa1ea 044dd38 80b9501 044dd38 ea19e17 044dd38 ea19e17 e0e93c4 044dd38 80b9501 044dd38 80b9501 044dd38 ea19e17 80b9501 044dd38 ecaa1ea 80b9501 50f19fa ea19e17 044dd38 80b9501 044dd38 ecaa1ea 80b9501 ecaa1ea 80b9501 ecaa1ea 044dd38 73d3fc4 2d9906b 80b9501 50f19fa ecaa1ea 80b9501 b3b6d77 2d9906b 80b9501 50f19fa ecaa1ea 80b9501 73d3fc4 80b9501 ea19e17 80b9501 ecaa1ea ea19e17 80b9501 ea19e17 ecaa1ea 044dd38 ecaa1ea ea19e17 ecaa1ea 044dd38 ecaa1ea ea19e17 044dd38 ecaa1ea 044dd38 ea19e17 80b9501 50f19fa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
import gradio as gr
import models
import pandas as pd
from gradio.themes.base import Base
from gradio.themes.utils import colors, fonts, sizes
from typing import Iterable
text = "<h1 style='text-align: center; color: #f0ba2d; font-size: 40px;'>TCO Comparison Calculator"
text0 = "<h1 style='text-align: center; color: midnightblue; font-size: 30px;'>Describe your use case"
text1 = "<h1 style='text-align: center; color: midnightblue; font-size: 25px;'>First option"
text2 = "<h1 style='text-align: center; color: midnightblue; font-size: 25px;'>Second option"
text3 = "<h1 style='text-align: center; color: midnightblue; font-size: 30px;'>Compute and compare TCOs"
description=f"""
<p>In this demo application, we help you compare different AI model services, such as Open source or SaaS solutions.</p>
<p>First, you'll have to choose how you want to use the AI model service based on your use case. Then, select the two model service solutions you'd like to compare. Depending on the solution you chose, you could be able to modify some parameters of the set-up. Eventually, we will provide you with the cost of deployment for the selected model services, as a function of the number of requests. You can compare both solutions to evaluate which one best suits your needs.</p>
"""
def on_use_case_change(use_case):
if use_case == "Summarize":
return gr.update(value=500), gr.update(value=200)
elif use_case == "Question-Answering":
return gr.update(value=300), gr.update(value=300)
else:
return gr.update(value=50), gr.update(value=10)
def compare(tco1, tco2):
r = tco1 / tco2
if r < 1:
comparison_result = f"Second solution's cost/request is {1/r:.5f} times more expensive than the first"
elif r > 1:
comparison_result = f"Second solution's cost/request is {r:.5f} times cheaper than the first"
else:
comparison_result = "Both solutions will cost the same."
return comparison_result
def update_plot(tco1, tco2, dropdown, dropdown2, labour_cost1, labour_cost2):
request_ranges = [100, 200, 300, 400, 500, 1000, 10000]
costs_tco1 = [(tco1 * req + labour_cost1) for req in request_ranges]
costs_tco2 = [(tco2 * req + labour_cost2) for req in request_ranges]
data = pd.DataFrame({
"Number of requests": request_ranges * 2,
"Cost ($)": costs_tco1 + costs_tco2,
"AI model service": [dropdown] * len(request_ranges) + [dropdown2] * len(request_ranges)
}
)
return gr.LinePlot.update(data, x="Number of requests", y="Cost ($)",color="AI model service",color_legend_position="bottom", title="Total Cost of Model Serving for one month", height=300, width=500, tooltip=["Number of requests", "Cost ($)", "AI model service"])
class Style(Base):
def __init__(
self,
*,
primary_hue: colors.Color | str = colors.neutral,
secondary_hue: colors.Color | str = colors.neutral,
neutral_hue: colors.Color | str = colors.neutral,
spacing_size: sizes.Size | str = sizes.spacing_md,
radius_size: sizes.Size | str = sizes.radius_md,
text_size: sizes.Size | str = sizes.text_md,
font: fonts.Font
| str
| Iterable[fonts.Font | str] = (fonts.GoogleFont("Sora")),
font_mono: fonts.Font
| str
| Iterable[fonts.Font | str] = (fonts.GoogleFont("Sora")),
):
super().__init__(
primary_hue=primary_hue,
secondary_hue=secondary_hue,
neutral_hue=neutral_hue,
spacing_size=spacing_size,
radius_size=radius_size,
text_size=text_size,
font=font,
font_mono=font_mono,
)
super().set(
background_fill_primary="#050f19", #The color of the background of blocks
background_fill_secondary="#050f19",
block_background_fill="#050f19", #The color of the background of blocks
block_background_fill_dark="#050f19",
border_color_primary="#050f19", #The border of a block such as dropdown
border_color_primary_dark="#050f19",
link_text_color="#f0ba2d", #The color for links
link_text_color_dark="#f0ba2d",
block_info_text_color="ffffff",
block_info_text_color_dark="ffffff",
block_border_color="#050f19", #The border color around an item (e.g. Accordion)
block_border_color_dark="#050f19",
block_shadow="*shadow_drop_lg",
#form_gap_width="*spacing_md", #The border gap between form elements, (e.g. consecutive textboxes)
input_background_fill="#081527", #The background of an input field
input_background_fill_dark="#081527",
input_border_color="#050f19",
input_border_color_dark="#050f19",
input_border_width="2px",
block_label_background_fill="#f0ba2d",
block_label_background_fill_dark="#f0ba2d",
block_label_border_color=None,
block_label_border_color_dark=None,
block_label_text_color="#050f19",
block_label_text_color_dark="#050f19",
button_primary_background_fill="#ffffff",
button_primary_border_color="#ffffff",
button_primary_text_color="#050f19",
button_shadow="*shadow_drop_lg",
block_title_background_fill="#f0ba2d", #The background of the title of a form element (e.g. textbox).
block_title_background_fill_dark="#f0ba2d", #The corner radius of the title of a form element (e.g. textbox).
block_title_radius="*radius_sm",
block_title_text_color="#050f19", #The text color of the title of a form element (e.g. textbox).
block_title_text_color_dark="#050f19",
block_title_text_size="*text_lg",
body_background_fill="#050f19",
body_background_fill_dark="#050f19",
body_text_color="#ffffff", #The default text color.
body_text_color_dark="#ffffff",
body_text_color_subdued="#ffffff",
body_text_color_subdued_dark="#ffffff",
slider_color="*secondary_300",
slider_color_dark="*secondary_600",
)
style = Style()
with gr.Blocks(theme=style) as demo:
Models: list[models.BaseTCOModel] = [models.OpenAIModel, models.CohereModel, models.OpenSourceLlama2Model]
model_names = [Model().get_name() for Model in Models]
gr.Markdown(value=text)
gr.Markdown(value=description)
with gr.Row():
with gr.Column():
# with gr.Row():
# gr.Markdown(value=text0)
with gr.Row():
use_case = gr.Dropdown(["Summarize", "Question-Answering", "Classification"], value="Question-Answering", label=" Describe your use case ")
with gr.Accordion("Click here to customize the number of input and output tokens for your use case", open=False):
with gr.Row():
input_tokens = gr.Slider(minimum=1, maximum=1000, value=300, step=1, label=" Number of input token ", info="We put a value that we find best suit your use case choice but feel free to adjust", interactive=True)
output_tokens = gr.Slider(minimum=1, maximum=1000, value=300, step=1, label=" Number of output token ", info="We put a value that we find best suit your use case choice but feel free to adjust", interactive=True)
with gr.Row(visible=False):
num_users = gr.Number(value="1000", interactive = True, label=" Number of users for your service ")
use_case.change(on_use_case_change, inputs=use_case, outputs=[input_tokens, output_tokens])
with gr.Row():
with gr.Column():
#gr.Markdown(value=text1)
page1 = models.ModelPage(Models)
dropdown = gr.Dropdown(model_names, interactive=True, label=" First AI service option ")
with gr.Accordion("Click here for more information on the computation parameters for your first AI service option", open=False):
page1.render()
with gr.Column():
#gr.Markdown(value=text2)
page2 = models.ModelPage(Models)
dropdown2 = gr.Dropdown(model_names, interactive=True, label=" Second AI service option ")
with gr.Accordion("Click here for more information on the computation parameters for your second AI service option", open=False):
page2.render()
dropdown.change(page1.make_model_visible, inputs=[dropdown, use_case], outputs=page1.get_all_components())
dropdown2.change(page2.make_model_visible, inputs=[dropdown2, use_case], outputs=page2.get_all_components())
#gr.Markdown(value=text3)
compute_tco_btn = gr.Button("Compute cost/request and TCOs", size="lg", variant="primary", scale=1)
tco1 = gr.State()
tco2 = gr.State()
labour_cost1 = gr.State()
labour_cost2 = gr.State()
with gr.Row():
with gr.Column():
tco_output = gr.Text("Output 1: ", label=" Cost/request for the first option ", info="This is only the infrastructure cost per request for deployment, the labor cost still has to be added for a Total Cost of Model Serving")
latency_info = gr.Markdown()
with gr.Accordion("Click here to see the formula", open=False):
tco_formula = gr.Markdown()
with gr.Column():
tco_output2 = gr.Text("Output 2: ", label=" Cost/request for the second option ", info="This is only the infrastructure cost per request for deployment, the labor cost still has to be added for a Total Cost of Model Serving")
latency_info2 = gr.Markdown()
with gr.Accordion("Click here to see the formula", open=False):
tco_formula2 = gr.Markdown()
with gr.Row():
with gr.Column(scale=1):
ratio = gr.Text("Ratio: ", label=" Ratio of cost/request for both solutions ")
with gr.Column(scale=3):
plot = gr.LinePlot()
compute_tco_btn.click(page1.compute_cost_per_token, inputs=page1.get_all_components_for_cost_computing() + [dropdown, input_tokens, output_tokens], outputs=[tco_output, tco1, tco_formula, latency_info, labour_cost1]).then(page2.compute_cost_per_token, inputs=page2.get_all_components_for_cost_computing() + [dropdown2, input_tokens, output_tokens], outputs=[tco_output2, tco2, tco_formula2, latency_info2, labour_cost2]).then(compare, inputs=[tco1, tco2], outputs=ratio).then(update_plot, inputs=[tco1, tco2, dropdown, dropdown2, labour_cost1, labour_cost2], outputs=plot)
demo.launch(debug=True) |