File size: 9,578 Bytes
e0e93c4
50f19fa
044dd38
5919083
ea19e17
ecaa1ea
044dd38
80b9501
 
044dd38
ea19e17
564f119
5919083
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea19e17
e0e93c4
044dd38
 
 
 
 
 
 
 
f4c03fc
044dd38
564f119
f4c03fc
044dd38
7432d34
564f119
f4c03fc
 
 
044dd38
7432d34
5919083
f4c03fc
 
 
044dd38
f4c03fc
 
5919083
 
 
 
 
 
 
564f119
 
 
 
 
 
 
 
 
 
947c3f0
564f119
 
 
 
 
 
5919083
564f119
5919083
564f119
ea19e17
80b9501
 
 
 
 
 
 
 
 
94ce651
044dd38
 
5919083
ecaa1ea
5919083
ecaa1ea
 
80b9501
50f19fa
ea19e17
 
 
044dd38
 
 
ecaa1ea
f4c03fc
80b9501
f4c03fc
 
80b9501
ecaa1ea
044dd38
 
 
73d3fc4
2d9906b
50f19fa
ecaa1ea
 
80b9501
b3b6d77
2d9906b
50f19fa
ecaa1ea
 
80b9501
73d3fc4
80b9501
 
ea19e17
f4c03fc
ea19e17
 
f4c03fc
 
ea19e17
 
 
564f119
044dd38
ecaa1ea
ea19e17
 
 
564f119
044dd38
ecaa1ea
ea19e17
044dd38
 
5919083
 
 
 
564f119
 
5919083
 
 
ea19e17
5919083
50f19fa
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import gradio as gr
import models
import pandas as pd
import theme
    
text = "<h1 style='text-align: center; color: #f0ba2d; font-size: 40px;'>TCO Comparison Calculator"
text0 = "<h1 style='text-align: center; color: midnightblue; font-size: 30px;'>Describe your use case"
text1 = "<h1 style='text-align: center; color: midnightblue; font-size: 25px;'>First option"
text2 = "<h1 style='text-align: center; color: midnightblue; font-size: 25px;'>Second option"
text3 = "<h1 style='text-align: center; color: midnightblue; font-size: 30px;'>Compute and compare TCOs"
description=f"""
<p>In this demo application, we help you compare different AI model services, such as Open source or SaaS solutions, based on the Total Cost of Ownership for their deployment. Please note that we focus on getting the service up and running, but not the maintenance that follows.</p>
<p>First, you'll have to select your use case. Then, select the two model service options you'd like to compare. Depending on the options you chose, you could be able to customize some parameters of the set-up. Eventually, we will provide you with the cost of deployment for the selected model services, as a function of the number of requests experienced by your service. You can compare both solutions to evaluate which one best suits your needs.</p>
"""
markdown = """
<div style="
    background-color: #f0ba2d;
    color: #050f19;
    border-radius: 10px;
    padding: 3px;
    margin: 0 auto;
    width: 150px;
    text-align: center;
    font-size: 18px;
">
Comparison
</div>
"""

def on_use_case_change(use_case):
    if use_case == "Summarize":
        return gr.update(value=500), gr.update(value=200)
    elif use_case == "Question-Answering":
        return gr.update(value=300), gr.update(value=300)
    else:
        return gr.update(value=50), gr.update(value=10)
    
def compare(tco1, tco2, labor_cost1, labor_cost2, dropdown, dropdown2):
    r = tco1 / tco2
    comparison_result3 = ""
    
    if r < 1:
        comparison_result = f"The cost/request of the second {dropdown2} service is {1/r:.5f} times more expensive than the one of the first {dropdown} service."
        if labor_cost1 > labor_cost2:
            meeting_point = (labor_cost2 - labor_cost1) / (tco1 - tco2)
            comparison_result3 = f"The number of requests you need to achieve in a month to have the labor cost of the {dropdown} service be absorbed and both solution TCOs be equal would be of {meeting_point:.0f}."
    
    elif r > 1:
        comparison_result = f"The cost/request of the second {dropdown2} service is {r:.5f} times cheaper than the one of the first {dropdown} service."
        if labor_cost1 < labor_cost2:
            meeting_point = (labor_cost2 - labor_cost1) / (tco1 - tco2)
            comparison_result3 = f"The number of requests you need to achieve in a month to have the labor cost of the {dropdown2} service be absorbed and both solution TCOs be equal would be of {meeting_point:.0f}."
    
    else:
        comparison_result = f"Both solutions have the same cost/request." 
    
    info = f"""
    <br>
    <p> {comparison_result} </p>
    <br>
    <p> {comparison_result3} </p>
    """
    return info

def create_table(tco1, tco2, labor_cost1, labor_cost2, dropdown, dropdown2):
    list_values = []
    labor_cost1 = round(labor_cost1, 1)
    labor_cost2 = round(labor_cost2, 1)
    first_sol = [tco1, labor_cost1]
    second_sol = [tco2, labor_cost2]
    list_values.append(first_sol)
    list_values.append(second_sol)

    data = pd.DataFrame(list_values, index=["1)" + " " + dropdown, "2)" + " " + dropdown2], columns=["Cost/request ($) ", "Labor Cost ($/month)"])
    
    formatted_data = data.copy()
    formatted_data["Cost/request ($) "] = formatted_data["Cost/request ($) "].apply('{:.5f}'.format)
    formatted_data["Labor Cost ($/month)"] = formatted_data["Labor Cost ($/month)"].apply('{:.1f}'.format)

    styled_data = formatted_data.style\
        .set_properties(**{'background-color': '#081527', 'color': '#ffffff', 'border-color': '#ffffff', 'border-width': '1px', 'border-style': 'solid'})\
        .to_html()
    
    return gr.update(value=styled_data)

def update_plot(tco1, tco2, dropdown, dropdown2, labour_cost1, labour_cost2):
    
    request_ranges = [100, 200, 300, 400, 500, 1000, 10000]
    costs_tco1 = [(tco1 * req + labour_cost1) for req in request_ranges]
    costs_tco2 = [(tco2 * req + labour_cost2) for req in request_ranges]

    data = pd.DataFrame({
        "Number of requests": request_ranges * 2,
        "Cost ($)": costs_tco1 + costs_tco2,
        "AI model service": ["1)" + " " + dropdown] * len(request_ranges) + ["2)" + " " + dropdown2] * len(request_ranges)
        }
    )
    return gr.LinePlot.update(data, visible=True, x="Number of requests", y="Cost ($)",color="AI model service",color_legend_position="bottom", title="Total Cost of Model Serving for one month", height=300, width=500, tooltip=["Number of requests", "Cost ($)", "AI model service"])

style = theme.Style()

with gr.Blocks(theme=style) as demo:
    Models: list[models.BaseTCOModel] = [models.OpenAIModel, models.CohereModel, models.OpenSourceLlama2Model]
    model_names = [Model().get_name() for Model in Models]
    gr.Markdown(value=text)
    gr.Markdown(value=description)
    
    with gr.Row():
        with gr.Column():
            with gr.Row():
                use_case = gr.Dropdown(["Summarize", "Question-Answering", "Classification"], value="Question-Answering", label=" Describe your use case ")
            with gr.Accordion("Click here if you want to customize the number of input and output tokens per request", open=False):    
                with gr.Row():
                    input_tokens = gr.Slider(minimum=1, maximum=1000, value=300, step=1, label=" Input tokens per request", info="We suggest a value that we believe best suit your use case choice but feel free to adjust", interactive=True)
                    output_tokens = gr.Slider(minimum=1, maximum=1000, value=300, step=1, label=" Output tokens per request", info="We suggest a value that we believe best suit your use case choice but feel free to adjust", interactive=True)
                with gr.Row(visible=False):    
                    num_users = gr.Number(value="1000", interactive = True, label=" Number of users for your service ")
    
    use_case.change(on_use_case_change, inputs=use_case, outputs=[input_tokens, output_tokens])
    
    with gr.Row():
        with gr.Column():
            page1 = models.ModelPage(Models)
            dropdown = gr.Dropdown(model_names, interactive=True, label=" First AI service option ")
            with gr.Accordion("Click here for more information on the computation parameters for your first AI service option", open=False):    
                page1.render()

        with gr.Column():
            page2 = models.ModelPage(Models)
            dropdown2 = gr.Dropdown(model_names, interactive=True, label=" Second AI service option ")
            with gr.Accordion("Click here for more information on the computation parameters for your second AI service option", open=False):        
                page2.render()
            
    dropdown.change(page1.make_model_visible, inputs=[dropdown, use_case], outputs=page1.get_all_components())
    dropdown2.change(page2.make_model_visible, inputs=[dropdown2, use_case], outputs=page2.get_all_components())
    
    compute_tco_btn = gr.Button("Compute & Compare", size="lg", variant="primary", scale=1) 
    tco1 = gr.State()
    tco2 = gr.State()
    labor_cost1 = gr.State()
    labor_cost2 = gr.State()
    
    with gr.Row():  
        with gr.Column():
            tco_output = gr.Text("Cost/request 1: ", label=" Cost/request for the first option ", info="This is only the infrastructure cost per request for deployment, the labor cost still has to be added for the AI model service deployment TCO.")
            latency_info = gr.Markdown()
            with gr.Accordion("Click here to see the formula", open=False):
                tco_formula = gr.Markdown()
    
        with gr.Column():
            tco_output2 = gr.Text("Cost/request 2: ", label=" Cost/request for the second option ", info="This is only the infrastructure cost per request for deployment, the labor cost still has to be added for the AI model service deployment TCO.")
            latency_info2 = gr.Markdown()
            with gr.Accordion("Click here to see the formula", open=False):
                tco_formula2 = gr.Markdown()
                
    with gr.Row(): 
        gr.Markdown(markdown)
        
    with gr.Row(variant='panel'):
        with gr.Column(scale=1):
            table = gr.Markdown()
        with gr.Column(scale=2):
            info = gr.Markdown()
    with gr.Row():
        plot = gr.LinePlot(visible=False)
    
    compute_tco_btn.click(page1.compute_cost_per_token, inputs=page1.get_all_components_for_cost_computing() + [dropdown, input_tokens, output_tokens], outputs=[tco_output, tco1, tco_formula, latency_info, labor_cost1]).then(page2.compute_cost_per_token, inputs=page2.get_all_components_for_cost_computing() + [dropdown2, input_tokens, output_tokens], outputs=[tco_output2, tco2, tco_formula2, latency_info2, labor_cost2]).then(create_table, inputs=[tco1, tco2, labor_cost1, labor_cost2, dropdown, dropdown2], outputs=table).then(compare, inputs=[tco1, tco2, labor_cost1, labor_cost2, dropdown, dropdown2], outputs=info).then(update_plot, inputs=[tco1, tco2, dropdown, dropdown2, labor_cost1, labor_cost2], outputs=plot)

demo.launch(debug=True)