Spaces:
Runtime error
Runtime error
Anirudh Madhigiri Gopinath
commited on
Commit
•
fa2034d
1
Parent(s):
4053944
pusing
Browse files- .DS_Store +0 -0
- README 2.md +111 -0
- app.py +284 -0
- generate_keys.py +15 -0
- hashed_password.pkl +0 -0
- ml_logo.png +0 -0
- requirements.txt +127 -0
- utils/.DS_Store +0 -0
- utils/__pycache__/check_pydantic_version.cpython-310.pyc +0 -0
- utils/__pycache__/check_pydantic_version.cpython-311.pyc +0 -0
- utils/__pycache__/check_pydantic_version.cpython-39.pyc +0 -0
- utils/__pycache__/config.cpython-310.pyc +0 -0
- utils/__pycache__/config.cpython-311.pyc +0 -0
- utils/__pycache__/config.cpython-39.pyc +0 -0
- utils/__pycache__/haystack.cpython-310.pyc +0 -0
- utils/__pycache__/haystack.cpython-311.pyc +0 -0
- utils/__pycache__/haystack.cpython-39.pyc +0 -0
- utils/__pycache__/ui.cpython-310.pyc +0 -0
- utils/__pycache__/ui.cpython-311.pyc +0 -0
- utils/check_pydantic_version.py +26 -0
- utils/config.py +43 -0
- utils/haystack.py +124 -0
- utils/ui.py +16 -0
.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
README 2.md
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Document Insights - Extractive & Generative Methods
|
3 |
+
emoji: 👑
|
4 |
+
colorFrom: indigo
|
5 |
+
colorTo: indigo
|
6 |
+
sdk: streamlit
|
7 |
+
sdk_version: 1.23.0
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
---
|
11 |
+
|
12 |
+
# Template Streamlit App for Haystack Search Pipelines
|
13 |
+
|
14 |
+
This template [Streamlit](https://docs.streamlit.io/) app set up for simple [Haystack search applications](https://docs.haystack.deepset.ai/docs/semantic_search). The template is ready to do QA with **Retrievel Augmented Generation**, or **Ectractive QA**
|
15 |
+
|
16 |
+
See the ['How to use this template'](#how-to-use-this-template) instructions below to create a simple UI for your own Haystack search pipelines.
|
17 |
+
|
18 |
+
Below you will also find instructions on how you could [push this to Hugging Face Spaces 🤗](#pushing-to-hugging-face-spaces-).
|
19 |
+
|
20 |
+
## Installation and Running
|
21 |
+
To run the bare application which does _nothing_:
|
22 |
+
1. Install requirements: `pip install -r requirements.txt`
|
23 |
+
2. Run the streamlit app: `streamlit run app.py`
|
24 |
+
|
25 |
+
This will start up the app on `localhost:8501` where you will find a simple search bar. Before you start editing, you'll notice that the app will only show you instructions on what to edit.
|
26 |
+
|
27 |
+
### Optional Configurations
|
28 |
+
|
29 |
+
You can set optional cofigurations to set the:
|
30 |
+
- `--task` you want to start the app with: `rag` or `extractive` (default: rag)
|
31 |
+
- `--store` you want to use: `inmemory`, `opensearch`, `weaviate` or `milvus` (default: inmemory)
|
32 |
+
- `--name` you want to have for the app. (default: 'My Search App')
|
33 |
+
|
34 |
+
E.g.:
|
35 |
+
|
36 |
+
```bash
|
37 |
+
streamlit run app.py -- --store opensearch --task extractive --name 'My Opensearch Documentation Search'
|
38 |
+
```
|
39 |
+
|
40 |
+
In a `.env` file, include all the config settings that you would like to use based on:
|
41 |
+
- The DocumentStore of your choice
|
42 |
+
- The Extractive/Generative model of your choice
|
43 |
+
|
44 |
+
While the `/utils/config.py` will create default values for some configurations, others have to be set in the `.env` such as the `OPENAI_KEY`
|
45 |
+
|
46 |
+
Example `.env`
|
47 |
+
|
48 |
+
```
|
49 |
+
OPENAI_KEY=YOUR_KEY
|
50 |
+
EMBEDDING_MODEL=sentence-transformers/all-MiniLM-L12-v2
|
51 |
+
GENERATIVE_MODEL=text-davinci-003
|
52 |
+
```
|
53 |
+
|
54 |
+
|
55 |
+
## How to use this template
|
56 |
+
1. Create a new repository from this template or simply open it in a codespace to start playing around 💙
|
57 |
+
2. Make sure your `requirements.txt` file includes the Haystack and Streamlit versions you would like to use.
|
58 |
+
3. Change the code in `utils/haystack.py` if you would like a different pipeline.
|
59 |
+
4. Create a `.env`file with all of your configuration settings.
|
60 |
+
5. Make any UI edits you'd like to and [share with the Haystack community](https://haystack.deepeset.ai/community)
|
61 |
+
6. Run the app as show in [installation and running](#installation-and-running)
|
62 |
+
|
63 |
+
### Repo structure
|
64 |
+
- `./utils`: This is where we have 3 files:
|
65 |
+
- `config.py`: This file extracts all of the configuration settings from a `.env` file. For some config settings, it uses default values. An example of this is in [this demo project](https://github.com/TuanaCelik/should-i-follow/blob/main/utils/config.py).
|
66 |
+
- `haystack.py`: Here you will find some functions already set up for you to start creating your Haystack search pipeline. It includes 2 main functions called `start_haystack()` which is what we use to create a pipeline and cache it, and `query()` which is the function called by `app.py` once a user query is received.
|
67 |
+
- `ui.py`: Use this file for any UI and initial value setups.
|
68 |
+
- `app.py`: This is the main Streamlit application file that we will run. In its current state it has a simple search bar, a 'Run' button, and a response that you can highlight answers with.
|
69 |
+
|
70 |
+
### What to edit?
|
71 |
+
There are default pipelines both in `start_haystack_extractive()` and `start_haystack_rag()`
|
72 |
+
|
73 |
+
- Change the pipelines to use the embedding models, extractive or generative models as you need.
|
74 |
+
- If using the `rag` task, change the `default_prompt_template` to use one of our available ones on [PromptHub](https://prompthub.deepset.ai) or create your own `PromptTemplate`
|
75 |
+
|
76 |
+
|
77 |
+
## Pushing to Hugging Face Spaces 🤗
|
78 |
+
|
79 |
+
Below is an example GitHub action that will let you push your Streamlit app straight to the Hugging Face Hub as a Space.
|
80 |
+
|
81 |
+
A few things to pay attention to:
|
82 |
+
|
83 |
+
1. Create a New Space on Hugging Face with the Streamlit SDK.
|
84 |
+
2. Create a Hugging Face token on your HF account.
|
85 |
+
3. Create a secret on your GitHub repo called `HF_TOKEN` and put your Hugging Face token here.
|
86 |
+
4. If you're using DocumentStores or APIs that require some keys/tokens, make sure these are provided as a secret for your HF Space too!
|
87 |
+
5. This readme is set up to tell HF spaces that it's using streamlit and that the app is running on `app.py`, make any changes to the frontmatter of this readme to display the title, emoji etc you desire.
|
88 |
+
6. Create a file in `.github/workflows/hf_sync.yml`. Here's an example that you can change with your own information, and an [example workflow](https://github.com/TuanaCelik/should-i-follow/blob/main/.github/workflows/hf_sync.yml) working for the [Should I Follow demo](https://huggingface.co/spaces/deepset/should-i-follow)
|
89 |
+
|
90 |
+
```yaml
|
91 |
+
name: Sync to Hugging Face hub
|
92 |
+
on:
|
93 |
+
push:
|
94 |
+
branches: [main]
|
95 |
+
|
96 |
+
# to run this workflow manually from the Actions tab
|
97 |
+
workflow_dispatch:
|
98 |
+
|
99 |
+
jobs:
|
100 |
+
sync-to-hub:
|
101 |
+
runs-on: ubuntu-latest
|
102 |
+
steps:
|
103 |
+
- uses: actions/checkout@v2
|
104 |
+
with:
|
105 |
+
fetch-depth: 0
|
106 |
+
lfs: true
|
107 |
+
- name: Push to hub
|
108 |
+
env:
|
109 |
+
HF_TOKEN: ${{ secrets.HF_TOKEN }}
|
110 |
+
run: git push --force https://{YOUR_HF_USERNAME}:$HF_TOKEN@{YOUR_HF_SPACE_REPO} main
|
111 |
+
```
|
app.py
ADDED
@@ -0,0 +1,284 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from utils.check_pydantic_version import use_pydantic_v1
|
2 |
+
use_pydantic_v1() #This function has to be run before importing haystack. as haystack requires pydantic v1 to run
|
3 |
+
|
4 |
+
|
5 |
+
from operator import index
|
6 |
+
import streamlit as st
|
7 |
+
import logging
|
8 |
+
import os
|
9 |
+
|
10 |
+
from annotated_text import annotation
|
11 |
+
from json import JSONDecodeError
|
12 |
+
from markdown import markdown
|
13 |
+
from utils.config import parser
|
14 |
+
from utils.haystack import start_document_store, query, initialize_pipeline, start_preprocessor_node, start_retriever, start_reader
|
15 |
+
from utils.ui import reset_results, set_initial_state
|
16 |
+
import pandas as pd
|
17 |
+
import haystack
|
18 |
+
|
19 |
+
from datetime import datetime
|
20 |
+
import streamlit.components.v1 as components
|
21 |
+
import streamlit_authenticator as stauth
|
22 |
+
import pickle
|
23 |
+
|
24 |
+
from streamlit_modal import Modal
|
25 |
+
import numpy as np
|
26 |
+
|
27 |
+
|
28 |
+
|
29 |
+
names = ['mlreply']
|
30 |
+
usernames = ['docwhiz']
|
31 |
+
with open('hashed_password.pkl','rb') as f:
|
32 |
+
hashed_passwords = pickle.load(f)
|
33 |
+
|
34 |
+
|
35 |
+
|
36 |
+
# Whether the file upload should be enabled or not
|
37 |
+
DISABLE_FILE_UPLOAD = bool(os.getenv("DISABLE_FILE_UPLOAD"))
|
38 |
+
|
39 |
+
|
40 |
+
def show_documents_list(retrieved_documents):
|
41 |
+
data = []
|
42 |
+
for i, document in enumerate(retrieved_documents):
|
43 |
+
data.append([document.meta['name']])
|
44 |
+
df = pd.DataFrame(data, columns=['Uploaded Document Name'])
|
45 |
+
df.drop_duplicates(subset=['Uploaded Document Name'], inplace=True)
|
46 |
+
df.index = np.arange(1, len(df) + 1)
|
47 |
+
return df
|
48 |
+
|
49 |
+
# Define a function to handle file uploads
|
50 |
+
def upload_files():
|
51 |
+
uploaded_files = upload_container.file_uploader(
|
52 |
+
"upload", type=["pdf", "txt", "docx"], accept_multiple_files=True, label_visibility="hidden", key=1
|
53 |
+
)
|
54 |
+
return uploaded_files
|
55 |
+
|
56 |
+
|
57 |
+
# Define a function to process a single file
|
58 |
+
def process_file(data_file, preprocesor, document_store):
|
59 |
+
# read file and add content
|
60 |
+
file_contents = data_file.read().decode("utf-8")
|
61 |
+
docs = [{
|
62 |
+
'content': str(file_contents),
|
63 |
+
'meta': {'name': str(data_file.name)}
|
64 |
+
}]
|
65 |
+
try:
|
66 |
+
names = [item.meta.get('name') for item in document_store.get_all_documents()]
|
67 |
+
#if args.store == 'inmemory':
|
68 |
+
# doc = converter.convert(file_path=files, meta=None)
|
69 |
+
if data_file.name in names:
|
70 |
+
print(f"{data_file.name} already processed")
|
71 |
+
else:
|
72 |
+
print(f'preprocessing uploaded doc {data_file.name}.......')
|
73 |
+
#print(data_file.read().decode("utf-8"))
|
74 |
+
preprocessed_docs = preprocesor.process(docs)
|
75 |
+
print('writing to document store.......')
|
76 |
+
document_store.write_documents(preprocessed_docs)
|
77 |
+
print('updating emebdding.......')
|
78 |
+
document_store.update_embeddings(retriever)
|
79 |
+
except Exception as e:
|
80 |
+
print(e)
|
81 |
+
|
82 |
+
|
83 |
+
# Define a function to upload the documents to haystack document store
|
84 |
+
def upload_document():
|
85 |
+
if data_files is not None:
|
86 |
+
for data_file in data_files:
|
87 |
+
# Upload file
|
88 |
+
if data_file:
|
89 |
+
try:
|
90 |
+
#raw_json = upload_doc(data_file)
|
91 |
+
# Call the process_file function for each uploaded file
|
92 |
+
if args.store == 'inmemory':
|
93 |
+
processed_data = process_file(data_file, preprocesor, document_store)
|
94 |
+
#upload_container.write(str(data_file.name) + " ✅ ")
|
95 |
+
except Exception as e:
|
96 |
+
upload_container.write(str(data_file.name) + " ❌ ")
|
97 |
+
upload_container.write("_This file could not be parsed, see the logs for more information._")
|
98 |
+
|
99 |
+
# Define a function to reset the documents in haystack document store
|
100 |
+
def reset_documents():
|
101 |
+
print('\nReseting documents list at ' + str(datetime.now()) + '\n')
|
102 |
+
st.session_state.data_files = None
|
103 |
+
document_store.delete_documents()
|
104 |
+
|
105 |
+
try:
|
106 |
+
args = parser.parse_args()
|
107 |
+
preprocesor = start_preprocessor_node()
|
108 |
+
document_store = start_document_store(type=args.store)
|
109 |
+
document_store.get_all_documents()
|
110 |
+
retriever = start_retriever(document_store)
|
111 |
+
reader = start_reader()
|
112 |
+
st.set_page_config(
|
113 |
+
page_title="MLReplySearch",
|
114 |
+
layout="centered",
|
115 |
+
page_icon=":shark:",
|
116 |
+
menu_items={
|
117 |
+
'Get Help': 'https://www.extremelycoolapp.com/help',
|
118 |
+
'Report a bug': "https://www.extremelycoolapp.com/bug",
|
119 |
+
'About': "# This is a header. This is an *extremely* cool app!"
|
120 |
+
}
|
121 |
+
)
|
122 |
+
st.sidebar.image("ml_logo.png", use_column_width=True)
|
123 |
+
|
124 |
+
authenticator = stauth.Authenticate(names, usernames, hashed_passwords, "document_search", "random_text", cookie_expiry_days=1)
|
125 |
+
|
126 |
+
name, authentication_status, username = authenticator.login("Login", "main")
|
127 |
+
|
128 |
+
if authentication_status == False:
|
129 |
+
st.error("Username/Password is incorrect")
|
130 |
+
|
131 |
+
if authentication_status == None:
|
132 |
+
st.warning("Please enter your username and password")
|
133 |
+
|
134 |
+
if authentication_status:
|
135 |
+
|
136 |
+
# Sidebar for Task Selection
|
137 |
+
st.sidebar.header('Options:')
|
138 |
+
|
139 |
+
# OpenAI Key Input
|
140 |
+
openai_key = st.sidebar.text_input("Enter LLM-authorization Key:", type="password")
|
141 |
+
|
142 |
+
if openai_key:
|
143 |
+
task_options = ['Extractive', 'Generative']
|
144 |
+
else:
|
145 |
+
task_options = ['Extractive']
|
146 |
+
|
147 |
+
task_selection = st.sidebar.radio('Select the task:', task_options)
|
148 |
+
|
149 |
+
# Check the task and initialize pipeline accordingly
|
150 |
+
if task_selection == 'Extractive':
|
151 |
+
pipeline_extractive = initialize_pipeline("extractive", document_store, retriever, reader)
|
152 |
+
elif task_selection == 'Generative' and openai_key: # Check for openai_key to ensure user has entered it
|
153 |
+
pipeline_rag = initialize_pipeline("rag", document_store, retriever, reader, openai_key=openai_key)
|
154 |
+
|
155 |
+
|
156 |
+
set_initial_state()
|
157 |
+
|
158 |
+
modal = Modal("Manage Files", key="demo-modal")
|
159 |
+
open_modal = st.sidebar.button("Manage Files", use_container_width=True)
|
160 |
+
if open_modal:
|
161 |
+
modal.open()
|
162 |
+
|
163 |
+
st.write('# ' + args.name)
|
164 |
+
if modal.is_open():
|
165 |
+
with modal.container():
|
166 |
+
if not DISABLE_FILE_UPLOAD:
|
167 |
+
upload_container = st.container()
|
168 |
+
data_files = upload_files()
|
169 |
+
upload_document()
|
170 |
+
st.session_state.sidebar_state = 'collapsed'
|
171 |
+
st.table(show_documents_list(document_store.get_all_documents()))
|
172 |
+
|
173 |
+
# File upload block
|
174 |
+
# if not DISABLE_FILE_UPLOAD:
|
175 |
+
# upload_container = st.sidebar.container()
|
176 |
+
# upload_container.write("## File Upload:")
|
177 |
+
# data_files = upload_files()
|
178 |
+
# Button to update files in the documentStore
|
179 |
+
# upload_container.button('Upload Files', on_click=upload_document, args=())
|
180 |
+
|
181 |
+
# Button to reset the documents in DocumentStore
|
182 |
+
st.sidebar.button("Reset documents", on_click=reset_documents, args=(), use_container_width=True)
|
183 |
+
|
184 |
+
if "question" not in st.session_state:
|
185 |
+
st.session_state.question = ""
|
186 |
+
# Search bar
|
187 |
+
question = st.text_input("Question", value=st.session_state.question, max_chars=100, on_change=reset_results, label_visibility="hidden")
|
188 |
+
|
189 |
+
run_pressed = st.button("Run")
|
190 |
+
|
191 |
+
run_query = (
|
192 |
+
run_pressed or question != st.session_state.question #or task_selection != st.session_state.task
|
193 |
+
)
|
194 |
+
|
195 |
+
# Get results for query
|
196 |
+
if run_query and question:
|
197 |
+
if task_selection == 'Extractive':
|
198 |
+
reset_results()
|
199 |
+
st.session_state.question = question
|
200 |
+
with st.spinner("🔎 Running your pipeline"):
|
201 |
+
try:
|
202 |
+
st.session_state.results_extractive = query(pipeline_extractive, question)
|
203 |
+
st.session_state.task = task_selection
|
204 |
+
except JSONDecodeError as je:
|
205 |
+
st.error(
|
206 |
+
"👓 An error occurred reading the results. Is the document store working?"
|
207 |
+
)
|
208 |
+
except Exception as e:
|
209 |
+
logging.exception(e)
|
210 |
+
st.error("🐞 An error occurred during the request.")
|
211 |
+
|
212 |
+
elif task_selection == 'Generative':
|
213 |
+
reset_results()
|
214 |
+
st.session_state.question = question
|
215 |
+
with st.spinner("🔎 Running your pipeline"):
|
216 |
+
try:
|
217 |
+
st.session_state.results_generative = query(pipeline_rag, question)
|
218 |
+
st.session_state.task = task_selection
|
219 |
+
except JSONDecodeError as je:
|
220 |
+
st.error(
|
221 |
+
"👓 An error occurred reading the results. Is the document store working?"
|
222 |
+
)
|
223 |
+
except Exception as e:
|
224 |
+
if "API key is invalid" in str(e):
|
225 |
+
logging.exception(e)
|
226 |
+
st.error("🐞 incorrect API key provided. You can find your API key at https://platform.openai.com/account/api-keys.")
|
227 |
+
else:
|
228 |
+
logging.exception(e)
|
229 |
+
st.error("🐞 An error occurred during the request.")
|
230 |
+
# Display results
|
231 |
+
if (st.session_state.results_extractive or st.session_state.results_generative) and run_query:
|
232 |
+
|
233 |
+
# Handle Extractive Answers
|
234 |
+
if task_selection == 'Extractive':
|
235 |
+
results = st.session_state.results_extractive
|
236 |
+
|
237 |
+
st.subheader("Extracted Answers:")
|
238 |
+
|
239 |
+
if 'answers' in results:
|
240 |
+
answers = results['answers']
|
241 |
+
treshold = 0.2
|
242 |
+
higher_then_treshold = any(ans.score > treshold for ans in answers)
|
243 |
+
if not higher_then_treshold:
|
244 |
+
st.markdown(f"<span style='color:red'>Please note none of the answers achieved a score higher then {int(treshold) * 100}%. Which probably means that the desired answer is not in the searched documents.</span>", unsafe_allow_html=True)
|
245 |
+
for count, answer in enumerate(answers):
|
246 |
+
if answer.answer:
|
247 |
+
text, context = answer.answer, answer.context
|
248 |
+
start_idx = context.find(text)
|
249 |
+
end_idx = start_idx + len(text)
|
250 |
+
score = round(answer.score, 3)
|
251 |
+
st.markdown(f"**Answer {count + 1}:**")
|
252 |
+
st.markdown(
|
253 |
+
context[:start_idx] + str(annotation(body=text, label=f'SCORE {score}', background='#964448', color='#ffffff')) + context[end_idx:],
|
254 |
+
unsafe_allow_html=True,
|
255 |
+
)
|
256 |
+
else:
|
257 |
+
st.info(
|
258 |
+
"🤔 Haystack is unsure whether any of the documents contain an answer to your question. Try to reformulate it!"
|
259 |
+
)
|
260 |
+
|
261 |
+
# Handle Generative Answers
|
262 |
+
elif task_selection == 'Generative':
|
263 |
+
results = st.session_state.results_generative
|
264 |
+
st.subheader("Generated Answer:")
|
265 |
+
if 'results' in results:
|
266 |
+
st.markdown("**Answer:**")
|
267 |
+
st.write(results['results'][0])
|
268 |
+
|
269 |
+
# Handle Retrieved Documents
|
270 |
+
if 'documents' in results:
|
271 |
+
retrieved_documents = results['documents']
|
272 |
+
st.subheader("Retriever Results:")
|
273 |
+
|
274 |
+
data = []
|
275 |
+
for i, document in enumerate(retrieved_documents):
|
276 |
+
# Truncate the content
|
277 |
+
truncated_content = (document.content[:150] + '...') if len(document.content) > 150 else document.content
|
278 |
+
data.append([i + 1, document.meta['name'], truncated_content])
|
279 |
+
|
280 |
+
# Convert data to DataFrame and display using Streamlit
|
281 |
+
df = pd.DataFrame(data, columns=['Ranked Context', 'Document Name', 'Content'])
|
282 |
+
st.table(df)
|
283 |
+
except SystemExit as e:
|
284 |
+
os._exit(e.code)
|
generate_keys.py
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
import pickle
|
4 |
+
from pathlib import Path
|
5 |
+
|
6 |
+
import streamlit_authenticator as stauth
|
7 |
+
|
8 |
+
names = ['mlreply']
|
9 |
+
usernames = ['docwhiz']
|
10 |
+
passwords = ['Docwhiz']
|
11 |
+
|
12 |
+
hashed_passwords = stauth.Hasher((passwords)).generate()
|
13 |
+
|
14 |
+
with open('hashed_password.pkl','wb') as f:
|
15 |
+
pickle.dump(hashed_passwords, f)
|
hashed_password.pkl
ADDED
Binary file (78 Bytes). View file
|
|
ml_logo.png
ADDED
requirements.txt
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
accelerate==0.24.1
|
2 |
+
aiohttp==3.8.6
|
3 |
+
aiosignal==1.3.1
|
4 |
+
altair==5.1.2
|
5 |
+
annotated-types==0.6.0
|
6 |
+
appdirs==1.4.4
|
7 |
+
argon2-cffi==23.1.0
|
8 |
+
argon2-cffi-bindings==21.2.0
|
9 |
+
async-timeout==4.0.3
|
10 |
+
attrs==23.1.0
|
11 |
+
Authlib==1.2.1
|
12 |
+
backoff==2.2.1
|
13 |
+
blinker==1.7.0
|
14 |
+
boilerpy3==1.0.7
|
15 |
+
cachetools==5.3.2
|
16 |
+
canals==0.7.0
|
17 |
+
cattrs==23.1.2
|
18 |
+
certifi==2023.7.22
|
19 |
+
cffi==1.16.0
|
20 |
+
charset-normalizer==3.3.2
|
21 |
+
click==8.1.7
|
22 |
+
cryptography==41.0.5
|
23 |
+
datasets==2.15.0
|
24 |
+
dill==0.3.7
|
25 |
+
docopt==0.6.2
|
26 |
+
environs==9.5.0
|
27 |
+
Events==0.5
|
28 |
+
farm-haystack==1.20.0
|
29 |
+
filelock==3.13.1
|
30 |
+
frozenlist==1.4.0
|
31 |
+
fsspec==2023.10.0
|
32 |
+
gitdb==4.0.11
|
33 |
+
GitPython==3.1.40
|
34 |
+
grpcio==1.58.0
|
35 |
+
htbuilder==0.6.2
|
36 |
+
huggingface-hub==0.19.4
|
37 |
+
idna==3.4
|
38 |
+
importlib-metadata==6.8.0
|
39 |
+
inflect==7.0.0
|
40 |
+
Jinja2==3.1.2
|
41 |
+
joblib==1.3.2
|
42 |
+
jsonschema==4.20.0
|
43 |
+
jsonschema-specifications==2023.11.1
|
44 |
+
lazy-imports==0.3.1
|
45 |
+
Markdown==3.5.1
|
46 |
+
markdown-it-py==3.0.0
|
47 |
+
MarkupSafe==2.1.3
|
48 |
+
marshmallow==3.20.1
|
49 |
+
mdurl==0.1.2
|
50 |
+
milvus-haystack==0.0.2
|
51 |
+
minio==7.2.0
|
52 |
+
monotonic==1.6
|
53 |
+
more-itertools==10.1.0
|
54 |
+
mpmath==1.3.0
|
55 |
+
multidict==6.0.4
|
56 |
+
multiprocess==0.70.15
|
57 |
+
networkx==3.2.1
|
58 |
+
nltk==3.8.1
|
59 |
+
num2words==0.5.13
|
60 |
+
numpy==1.26.2
|
61 |
+
opensearch-py==2.4.1
|
62 |
+
packaging==23.2
|
63 |
+
pandas==2.1.3
|
64 |
+
Pillow==9.5.0
|
65 |
+
platformdirs==4.0.0
|
66 |
+
posthog==3.0.2
|
67 |
+
prompthub-py==4.0.0
|
68 |
+
protobuf==4.25.1
|
69 |
+
psutil==5.9.6
|
70 |
+
pyarrow==14.0.1
|
71 |
+
pyarrow-hotfix==0.5
|
72 |
+
pycparser==2.21
|
73 |
+
pycryptodome==3.19.0
|
74 |
+
pydantic==1.10.13
|
75 |
+
pydantic_core==2.14.3
|
76 |
+
pydeck==0.8.1b0
|
77 |
+
Pygments==2.16.1
|
78 |
+
pymilvus==2.3.3
|
79 |
+
Pympler==1.0.1
|
80 |
+
python-dateutil==2.8.2
|
81 |
+
python-dotenv==1.0.0
|
82 |
+
pytz==2023.3.post1
|
83 |
+
pytz-deprecation-shim==0.1.0.post0
|
84 |
+
PyYAML==6.0.1
|
85 |
+
quantulum3==0.9.0
|
86 |
+
rank-bm25==0.2.2
|
87 |
+
referencing==0.31.0
|
88 |
+
regex==2023.10.3
|
89 |
+
requests==2.31.0
|
90 |
+
requests-cache==0.9.8
|
91 |
+
rich==13.7.0
|
92 |
+
rpds-py==0.13.0
|
93 |
+
safetensors==0.3.3.post1
|
94 |
+
scikit-learn==1.3.2
|
95 |
+
scipy==1.11.3
|
96 |
+
sentence-transformers==2.2.2
|
97 |
+
sentencepiece==0.1.99
|
98 |
+
six==1.16.0
|
99 |
+
smmap==5.0.1
|
100 |
+
sseclient-py==1.8.0
|
101 |
+
st-annotated-text==4.0.1
|
102 |
+
streamlit==1.23.0
|
103 |
+
sympy==1.12
|
104 |
+
tenacity==8.2.3
|
105 |
+
threadpoolctl==3.2.0
|
106 |
+
tiktoken==0.5.1
|
107 |
+
tokenizers==0.13.3
|
108 |
+
toml==0.10.2
|
109 |
+
toolz==0.12.0
|
110 |
+
torch==2.1.1
|
111 |
+
torchvision==0.16.1
|
112 |
+
tornado==6.3.3
|
113 |
+
tqdm==4.66.1
|
114 |
+
transformers==4.32.1
|
115 |
+
typing_extensions==4.8.0
|
116 |
+
tzdata==2023.3
|
117 |
+
tzlocal==4.3.1
|
118 |
+
ujson==5.8.0
|
119 |
+
url-normalize==1.4.3
|
120 |
+
urllib3==2.1.0
|
121 |
+
validators==0.22.0
|
122 |
+
weaviate-client==3.25.3
|
123 |
+
xxhash==3.4.1
|
124 |
+
yarl==1.9.2
|
125 |
+
zipp==3.17.0
|
126 |
+
streamlit-authenticator==0.1.5
|
127 |
+
streamlit-modal==0.1.0
|
utils/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
utils/__pycache__/check_pydantic_version.cpython-310.pyc
ADDED
Binary file (1.04 kB). View file
|
|
utils/__pycache__/check_pydantic_version.cpython-311.pyc
ADDED
Binary file (2.04 kB). View file
|
|
utils/__pycache__/check_pydantic_version.cpython-39.pyc
ADDED
Binary file (1.02 kB). View file
|
|
utils/__pycache__/config.cpython-310.pyc
ADDED
Binary file (1.51 kB). View file
|
|
utils/__pycache__/config.cpython-311.pyc
ADDED
Binary file (2.51 kB). View file
|
|
utils/__pycache__/config.cpython-39.pyc
ADDED
Binary file (1.51 kB). View file
|
|
utils/__pycache__/haystack.cpython-310.pyc
ADDED
Binary file (3.61 kB). View file
|
|
utils/__pycache__/haystack.cpython-311.pyc
ADDED
Binary file (5.81 kB). View file
|
|
utils/__pycache__/haystack.cpython-39.pyc
ADDED
Binary file (3.61 kB). View file
|
|
utils/__pycache__/ui.cpython-310.pyc
ADDED
Binary file (739 Bytes). View file
|
|
utils/__pycache__/ui.cpython-311.pyc
ADDED
Binary file (1.14 kB). View file
|
|
utils/check_pydantic_version.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pydantic
|
2 |
+
import os
|
3 |
+
import fileinput
|
4 |
+
|
5 |
+
def replace_string_in_files(folder_path, old_str, new_str):
|
6 |
+
for subdir, dirs, files in os.walk(folder_path):
|
7 |
+
for file in files:
|
8 |
+
file_path = os.path.join(subdir, file)
|
9 |
+
|
10 |
+
# Check if the file is a text file (you can modify this condition based on your needs)
|
11 |
+
if file.endswith(".txt") or file.endswith(".py"):
|
12 |
+
# Open the file in place for editing
|
13 |
+
with fileinput.FileInput(file_path, inplace=True) as f:
|
14 |
+
for line in f:
|
15 |
+
# Replace the old string with the new string
|
16 |
+
print(line.replace(old_str, new_str), end='')
|
17 |
+
|
18 |
+
|
19 |
+
def use_pydantic_v1():
|
20 |
+
module_file_path = pydantic.__file__
|
21 |
+
module_file_path = module_file_path.split('pydantic')[0] + 'haystack'
|
22 |
+
with open(module_file_path+'/schema.py','r') as f:
|
23 |
+
haystack_schema_file = f.read()
|
24 |
+
|
25 |
+
if 'from pydantic.v1' not in haystack_schema_file:
|
26 |
+
replace_string_in_files(module_file_path, 'from pydantic', 'from pydantic.v1')
|
utils/config.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import os
|
3 |
+
import os
|
4 |
+
from dotenv import load_dotenv
|
5 |
+
|
6 |
+
load_dotenv()
|
7 |
+
parser = argparse.ArgumentParser(description='This app lists animals')
|
8 |
+
|
9 |
+
document_store_choices = ('inmemory', 'weaviate', 'milvus', 'opensearch')
|
10 |
+
parser.add_argument('--store', choices=document_store_choices, default='inmemory', help='DocumentStore selection (default: %(default)s)')
|
11 |
+
parser.add_argument('--name', default="Document Insights: Extractive & Generative Methods")
|
12 |
+
|
13 |
+
model_configs = {
|
14 |
+
'EMBEDDING_MODEL': os.getenv("EMBEDDING_MODEL", "sentence-transformers/all-MiniLM-L12-v2"),
|
15 |
+
'GENERATIVE_MODEL': os.getenv("GENERATIVE_MODEL", "gpt-4"),
|
16 |
+
#'EXTRACTIVE_MODEL': os.getenv("EXTRACTIVE_MODEL", "deepset/roberta-base-squad2"),
|
17 |
+
'EXTRACTIVE_MODEL': os.getenv("EXTRACTIVE_MODEL", "deepset/gelectra-large-germanquad"),
|
18 |
+
#'EXTRACTIVE_MODEL': os.getenv("EXTRACTIVE_MODEL", "MachineLearningReply/bert-base-german-legal-qa"),
|
19 |
+
'OPENAI_KEY': os.getenv("OPENAI_KEY"),
|
20 |
+
'COHERE_KEY': os.getenv("COHERE_KEY"),
|
21 |
+
}
|
22 |
+
|
23 |
+
document_store_configs = {
|
24 |
+
# Weaviate Config
|
25 |
+
'WEAVIATE_HOST': os.getenv("WEAVIATE_HOST", "http://localhost"),
|
26 |
+
'WEAVIATE_PORT': os.getenv("WEAVIATE_PORT", 8080),
|
27 |
+
'WEAVIATE_INDEX': os.getenv("WEAVIATE_INDEX", "Document"),
|
28 |
+
'WEAVIATE_EMBEDDING_DIM': os.getenv("WEAVIATE_EMBEDDING_DIM", 768),
|
29 |
+
|
30 |
+
# OpenSearch Config
|
31 |
+
'OPENSEARCH_SCHEME': os.getenv("OPENSEARCH_SCHEME", "https"),
|
32 |
+
'OPENSEARCH_USERNAME': os.getenv("OPENSEARCH_USERNAME", "admin"),
|
33 |
+
'OPENSEARCH_PASSWORD': os.getenv("OPENSEARCH_PASSWORD", "admin"),
|
34 |
+
'OPENSEARCH_HOST': os.getenv("OPENSEARCH_HOST", "localhost"),
|
35 |
+
'OPENSEARCH_PORT': os.getenv("OPENSEARCH_PORT", 9200),
|
36 |
+
'OPENSEARCH_INDEX': os.getenv("OPENSEARCH_INDEX", "document"),
|
37 |
+
'OPENSEARCH_EMBEDDING_DIM': os.getenv("OPENSEARCH_EMBEDDING_DIM", 768),
|
38 |
+
|
39 |
+
# Milvus Config
|
40 |
+
'MILVUS_URI': os.getenv("MILVUS_URI", "http://localhost:19530/default"),
|
41 |
+
'MILVUS_INDEX': os.getenv("MILVUS_INDEX", "document"),
|
42 |
+
'MILVUS_EMBEDDING_DIM': os.getenv("MILVUS_EMBEDDING_DIM", 768),
|
43 |
+
}
|
utils/haystack.py
ADDED
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
|
3 |
+
from utils.config import document_store_configs, model_configs
|
4 |
+
from haystack import Pipeline
|
5 |
+
from haystack.schema import Answer
|
6 |
+
from haystack.document_stores import BaseDocumentStore
|
7 |
+
from haystack.document_stores import InMemoryDocumentStore, OpenSearchDocumentStore, WeaviateDocumentStore
|
8 |
+
from haystack.nodes import EmbeddingRetriever, FARMReader, PromptNode, PreProcessor
|
9 |
+
#from haystack.nodes import TextConverter, FileTypeClassifier, PDFToTextConverter
|
10 |
+
from milvus_haystack import MilvusDocumentStore
|
11 |
+
#Use this file to set up your Haystack pipeline and querying
|
12 |
+
|
13 |
+
@st.cache_resource(show_spinner=False)
|
14 |
+
def start_preprocessor_node():
|
15 |
+
print('initializing preprocessor node')
|
16 |
+
processor = PreProcessor(
|
17 |
+
clean_empty_lines= True,
|
18 |
+
clean_whitespace=True,
|
19 |
+
clean_header_footer=True,
|
20 |
+
#remove_substrings=None,
|
21 |
+
split_by="word",
|
22 |
+
split_length=100,
|
23 |
+
split_respect_sentence_boundary=True,
|
24 |
+
#split_overlap=0,
|
25 |
+
#max_chars_check= 10_000
|
26 |
+
)
|
27 |
+
return processor
|
28 |
+
#return docs
|
29 |
+
|
30 |
+
@st.cache_resource(show_spinner=False)
|
31 |
+
def start_document_store(type: str):
|
32 |
+
#This function starts the documents store of your choice based on your command line preference
|
33 |
+
print('initializing document store')
|
34 |
+
if type == 'inmemory':
|
35 |
+
document_store = InMemoryDocumentStore(use_bm25=True, embedding_dim=384)
|
36 |
+
'''
|
37 |
+
documents = [
|
38 |
+
{
|
39 |
+
'content': "Pi is a super dog",
|
40 |
+
'meta': {'name': "pi.txt"}
|
41 |
+
},
|
42 |
+
{
|
43 |
+
'content': "The revenue of siemens is 5 milion Euro",
|
44 |
+
'meta': {'name': "siemens.txt"}
|
45 |
+
},
|
46 |
+
]
|
47 |
+
document_store.write_documents(documents)
|
48 |
+
'''
|
49 |
+
elif type == 'opensearch':
|
50 |
+
document_store = OpenSearchDocumentStore(scheme = document_store_configs['OPENSEARCH_SCHEME'],
|
51 |
+
username = document_store_configs['OPENSEARCH_USERNAME'],
|
52 |
+
password = document_store_configs['OPENSEARCH_PASSWORD'],
|
53 |
+
host = document_store_configs['OPENSEARCH_HOST'],
|
54 |
+
port = document_store_configs['OPENSEARCH_PORT'],
|
55 |
+
index = document_store_configs['OPENSEARCH_INDEX'],
|
56 |
+
embedding_dim = document_store_configs['OPENSEARCH_EMBEDDING_DIM'])
|
57 |
+
elif type == 'weaviate':
|
58 |
+
document_store = WeaviateDocumentStore(host = document_store_configs['WEAVIATE_HOST'],
|
59 |
+
port = document_store_configs['WEAVIATE_PORT'],
|
60 |
+
index = document_store_configs['WEAVIATE_INDEX'],
|
61 |
+
embedding_dim = document_store_configs['WEAVIATE_EMBEDDING_DIM'])
|
62 |
+
elif type == 'milvus':
|
63 |
+
document_store = MilvusDocumentStore(uri = document_store_configs['MILVUS_URI'],
|
64 |
+
index = document_store_configs['MILVUS_INDEX'],
|
65 |
+
embedding_dim = document_store_configs['MILVUS_EMBEDDING_DIM'],
|
66 |
+
return_embedding=True)
|
67 |
+
return document_store
|
68 |
+
|
69 |
+
# cached to make index and models load only at start
|
70 |
+
@st.cache_resource(show_spinner=False)
|
71 |
+
def start_retriever(_document_store: BaseDocumentStore):
|
72 |
+
print('initializing retriever')
|
73 |
+
retriever = EmbeddingRetriever(document_store=_document_store,
|
74 |
+
embedding_model=model_configs['EMBEDDING_MODEL'],
|
75 |
+
top_k=5)
|
76 |
+
#
|
77 |
+
|
78 |
+
#_document_store.update_embeddings(retriever)
|
79 |
+
return retriever
|
80 |
+
|
81 |
+
|
82 |
+
@st.cache_resource(show_spinner=False)
|
83 |
+
def start_reader():
|
84 |
+
print('initializing reader')
|
85 |
+
reader = FARMReader(model_name_or_path=model_configs['EXTRACTIVE_MODEL'])
|
86 |
+
return reader
|
87 |
+
|
88 |
+
|
89 |
+
|
90 |
+
# cached to make index and models load only at start
|
91 |
+
@st.cache_resource(show_spinner=False)
|
92 |
+
def start_haystack_extractive(_document_store: BaseDocumentStore, _retriever: EmbeddingRetriever, _reader: FARMReader):
|
93 |
+
print('initializing pipeline')
|
94 |
+
pipe = Pipeline()
|
95 |
+
pipe.add_node(component=_retriever, name="Retriever", inputs=["Query"])
|
96 |
+
pipe.add_node(component= _reader, name="Reader", inputs=["Retriever"])
|
97 |
+
return pipe
|
98 |
+
|
99 |
+
@st.cache_resource(show_spinner=False)
|
100 |
+
def start_haystack_rag(_document_store: BaseDocumentStore, _retriever: EmbeddingRetriever, openai_key):
|
101 |
+
prompt_node = PromptNode(default_prompt_template="deepset/question-answering",
|
102 |
+
model_name_or_path=model_configs['GENERATIVE_MODEL'],
|
103 |
+
api_key=openai_key,
|
104 |
+
max_length=500)
|
105 |
+
pipe = Pipeline()
|
106 |
+
|
107 |
+
pipe.add_node(component=_retriever, name="Retriever", inputs=["Query"])
|
108 |
+
pipe.add_node(component=prompt_node, name="PromptNode", inputs=["Retriever"])
|
109 |
+
|
110 |
+
return pipe
|
111 |
+
|
112 |
+
#@st.cache_data(show_spinner=True)
|
113 |
+
def query(_pipeline, question):
|
114 |
+
params = {}
|
115 |
+
results = _pipeline.run(question, params=params)
|
116 |
+
return results
|
117 |
+
|
118 |
+
def initialize_pipeline(task, document_store, retriever, reader, openai_key = ""):
|
119 |
+
if task == 'extractive':
|
120 |
+
return start_haystack_extractive(document_store, retriever, reader)
|
121 |
+
elif task == 'rag':
|
122 |
+
return start_haystack_rag(document_store, retriever, openai_key)
|
123 |
+
|
124 |
+
|
utils/ui.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
|
3 |
+
def set_state_if_absent(key, value):
|
4 |
+
if key not in st.session_state:
|
5 |
+
st.session_state[key] = value
|
6 |
+
|
7 |
+
def set_initial_state():
|
8 |
+
set_state_if_absent("question", "Ask something here?")
|
9 |
+
set_state_if_absent("results_extractive", None)
|
10 |
+
set_state_if_absent("results_generative", None)
|
11 |
+
set_state_if_absent("task", None)
|
12 |
+
|
13 |
+
def reset_results(*args):
|
14 |
+
st.session_state.results_extractive = None
|
15 |
+
st.session_state.results_generative = None
|
16 |
+
st.session_state.task = None
|