import gradio as gr import pandas as pd data = { "Model": [ "MiniGPT-5", "EMU-2", "GILL", "Anole", "GPT-4o - Openjourney", "GPT-4o - SD-3", "GPT-4o - SD-XL", "GPT-4o - Flux", "Gemini-1.5 - Openjourney", "Gemini-1.5 - SD-3", "Gemini-1.5 - SD-XL", "Gemini-1.5 - Flux", "LLAVA-34b - Openjourney", "LLAVA-34b - SD-3", "LLAVA-34b - SD-XL", "LLAVA-34b - Flux", "Qwen-VL-70b - Openjourney", "Qwen-VL-70b - SD-3", "Qwen-VL-70b - SD-XL", "Qwen-VL-70b - Flux" ], "Situational analysis": [ 47.63, 39.65, 46.72, 48.95, 53.05, 53.00, 56.12, 54.97, 48.08, 47.48, 49.43, 47.07, 54.12, 54.72, 55.97, 54.23, 52.73, 54.98, 52.58, 54.23 ], "Project-based learning": [ 55.12, 46.12, 57.57, 59.05, 71.40, 71.20, 73.25, 68.80, 67.93, 68.70, 71.85, 68.33, 73.47, 72.55, 74.60, 71.32, 71.63, 71.87, 73.57, 69.47 ], "Multi-step reasoning": [ 42.17, 50.75, 39.33, 51.72, 53.67, 53.67, 53.67, 53.67, 60.05, 60.05, 60.05, 60.05, 47.28, 47.28, 47.28, 47.28, 55.63, 55.63, 55.63, 55.63 ], "AVG": [ 50.92, 45.33, 51.58, 55.22, 63.65, 63.52, 65.47, 62.63, 61.57, 61.87, 64.15, 61.55, 63.93, 63.57, 65.05, 62.73, 64.05, 64.75, 65.12, 63.18 ] } df = pd.DataFrame(data) def leaderboard(): return df interface = gr.Interface(fn=leaderboard, inputs=[], outputs=gr.Dataframe()) interface.launch()