File size: 3,346 Bytes
35bb374
 
 
 
6d9789e
35bb374
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5976c88
 
bffee5c
 
35bb374
 
 
bffee5c
22c7097
bffee5c
63e67b9
5976c88
 
 
35bb374
5976c88
35bb374
bffee5c
 
 
35bb374
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5976c88
35bb374
 
 
 
 
 
fc50377
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import gradio as gr
import pandas as pd

# Load the DataFrame
url = "TExam_new.csv"
df = pd.read_csv(url, encoding='utf-8-sig')

# Function to search years based on the selected mode
def search_years(search_by_year, search_by_keywords, query):
    if search_by_year and not search_by_keywords:
        # Search by matching the first four characters of the 'YEAR' column
        matches = df[df['YEAR'].str.startswith(query[:4])]
        if matches.empty:
            return "No results found for your query."
        return ", ".join(matches['YEAR'].tolist())  # Return a string of matched years
    elif search_by_keywords and not search_by_year:
        # Original keyword search logic
        keyword_list = [keyword.strip() for keyword in query.split(',')]
        matches = df[df['KEYWORDS'].apply(lambda x: any(keyword in x for keyword in keyword_list))]
        if matches.empty:
            return "No results found for your query."
        return ", ".join(matches['YEAR'].tolist())  # Return a string of matched years
    else:
        return "Please select exactly one search mode."


# Modified function to return keywords above the HTML image tag
# ...

def get_image_html(year):
    match = df[df['YEAR'] == year]
    if not match.empty:
        # Assuming 'LINK' column has the partial path like '2006_1.PNG'
        image_filename = match.iloc[0]['Filename']
        # Construct the full URL by appending the filename to the base path
        image_url = f'https://huggingface.co/spaces/MK-316/TCE/raw/main/TExams/{image_filename}'
        keywords = match.iloc[0]['KEYWORDS']
        # Place keywords above the image
        return f"<b>🌷 Keywords:</b> πŸ”‘ {keywords}<br><img src='{image_url}' width='800'/>"
    else:
        return "No keywords found for this year.", "No image found for this year."

# ...


# Create Gradio Blocks interface
with gr.Blocks() as app:
    gr.Markdown("# Teacher Certificate Exam Searching Engine")
    gr.Markdown("## ❄️ [1] Search Data")
    
    # Row for checkboxes
    with gr.Row():
        search_by_year = gr.Checkbox(label="Search by YEAR", value=False)
        search_by_keywords = gr.Checkbox(label="Search Years by Keywords", value=False)
    
    # Row for search query, button and output
    with gr.Row():
        search_input = gr.Textbox(label="Search Query: e.g., 2024 (by YEAR) or tapping (by Keywords)", 
                                  placeholder="Enter year or keywords separated by commas")
        search_button = gr.Button("Click to Search")
        search_output = gr.Text(label="Results (file names)")
    
    # Define actions
    search_button.click(fn=search_years, inputs=[search_by_year, search_by_keywords, search_input], outputs=search_output)
    
    gr.Markdown("## ❄️ [2] Display a Specific Exam Question Requested")
    with gr.Row():
        year_input = gr.Textbox(label="Type a file name among the result items: e.g., Year_item_part(a,b)", placeholder="Enter Year like '2024_01'")
        submit_button = gr.Button("Show me the exam question")  # Updated button text
    image_output = gr.HTML()
    
    # Define action for the submit button
    submit_button.click(fn=get_image_html, inputs=year_input, outputs=image_output)  # Use the button to trigger the display function

# Launch the app with sharing options
app.launch(debug=True)